Speaker
Description
Many scientific applications from rare-event searches to condensed matter system characterization to high-rate nuclear experiments require time-domain triggering on a raw stream of data, where the triggering is generally threshold-based or randomly acquired. When carrying out detector R&D, there is a need for a general data acquisition (DAQ) system to quickly and efficiently process such data. In the SPLENDOR collaboration, we are developing the Python-based SPLENDAQ package for this exact purpose - it offers two main features for offline analysis of continuous data: a threshold-triggering algorithm based on the time-domain optimal filter formalism and an algorithm for randomly choosing nonoverlapping segments for noise measurements. Combined with the commercially available Moku platform, developed by Liquid Instruments, we have a full pipeline of event building off raw data with minimal setup. Here, we review the underlying principles of this detector-agnostic DAQ package and give concrete examples of its utility in various applications.
Minioral | Yes |
---|---|
IEEE Member | No |
Are you a student? | No |