Welcome to Indico Global!

18–24 Aug 2024
Cairns, Queensland, Australia
Australia/Brisbane timezone

Probe Strongly Coupled Dark Sector via Gravitational Wave

19 Aug 2024, 14:00
30m
M6

M6

Oral G: Strongly-Coupled Theories and Dark Matter Strongly-Coupled Theories and Dark Matter

Speaker

ZHIWEI WANG

Description

We go beyond the state-of-the-art by combining first principal lattice results and effective field theory approaches as Polyakov Loop model to explore the non-perturbative dark deconfinement-confinement phase transition and the generation of gravitational-waves in a dark Yang-Mills theory. We further include fermions with different representations in the dark sector. Employing the Polyakov-Nambu-Jona-Lasinio (PNJL) model, we discover that the relevant gravitational wave signatures are highly dependent on the various representations. We also find a remarkable interplay between the deconfinement-confinement and chiral phase transitions. In both scenarios, the future Big Bang Observer and DECIGO experiment have a higher chance to detect the gravitational wave signals. Most recently, via Quark-Meson model, we find the phase transition and thus gravitational wave signals will be significantly enhanced when the system is near conformal. In addition, we find that this effective field theory approach can be implemented to study the glueball dark matter production mechanism and for the first time provide a solid prediction of glueball dark matter abundance. Our prediction is an order of magnitude smaller than the existing glueball abundance results in the literature.

Author

Presentation materials