2–5 Oct 2023
Caffè Pedrocchi
Europe/Rome timezone

Alfvénic instability and critical balance in ion-scale electromagnetic turbulence driven by electron temperature gradient

P1.5
3 Oct 2023, 17:40
4m
Sala Egizia (Caffè Pedrocchi)

Sala Egizia

Caffè Pedrocchi

Piazzetta Cappellato Pedrocchi, 17, Padova GPS: 45.4076321 N, 11.8772911 E

Speaker

Will Clarke (University of Oxford)

Description

University of Oxford
We investigate the saturation of turbulence in a three-field, fluid model of a magnetised plasma in a Z-pinch magnetic geometry. The model is derived by taking a long-wavelength limit of gyrokinetics and subsequently ordering the electron-temperature-gradient (ETG) to be much larger than all other equilibrium gradients, while still retaining the curvature and magnetic-field-gradient drifts. This system is linearly unstable to two-dimensional, curvature-mediated ETG modes, which themselves are known to undergo a secondary instability and generate zonal-flows, as seen in the Hasegawa-Mima (HM) system. By including the linear terms associated with the parallel physics in the secondary instability calculation, we find a three-dimensional branch to the HM secondary instability. The unstable secondary modes are Alfvénic, and their growth rate is comparable to that of the zonal-flows. We present numerical evidence that the level of heat transport in simulations is strongly tied to whether this Alfvénic secondary instability is adequately resolved. Further, we argue that this is the mechanism by which our model breaks up its two-dimensional, unstable structures and establishes a critically-balanced cascade of free energy.

Author

Will Clarke (University of Oxford)

Co-authors

Prof. Alexander Schekochihin (University of Oxford) Michael Barnes (University of Oxford) Mr Plamen Ivanov (University of Oxford) Toby Adkins (Oxford University)

Presentation materials

There are no materials yet.