Description
In this presentation we report on our study of the evolution in time of spherical excited scalar boson stars under the framework of General Relativity. We see that spherically symmetric excited scalar boson stars can be made dynamically stable (up to timescales of tμ ~ 10^4, where μ is the mass of the scalar particle) with a quartic self-interaction, for certain values of the self-interaction constant λ, up to n = 10, where n is the number of nodes in the radial function. We also report the compactness of these solutions, which are not compact enough to allow for ISCOs or light rings. We will also discuss the angular velocity of particles in a circular orbit and its relevance for the galactic rotational velocities.