26 June 2022 to 1 July 2022
University of Santiago de Compostela
Europe/Madrid timezone

Halo-EFT description of halo nuclei within one-neutron removal reactions

30 Jun 2022, 10:20
20m
Facultad de Ciencias de la Comunicación (University of Santiago de Compostela)

Facultad de Ciencias de la Comunicación

University of Santiago de Compostela

Campus Norte, Av. de Castelao, s/n, 15782 Santiago de Compostela, Spain
Oral contribution THU1

Speaker

Dr Chloë Hebborn (MSU/LLNL)

Description

Since their discovery, halo nuclei have challenged usual nuclear-structure models. These exotic nuclei exhibit a strongly clusterized structure, in which one or two loosely-bound nucleons have a high probability of presence far from the others, forming a diffuse halo around them. One-neutron removal reactions are often used to probe the single-particle structure of halo nuclei since they exhibit high counting statistics thanks to the loose binding of the halo to the rest of the nucleons. In this work, we reanalyze the one-neutron knockout measurements of $^{11}\rm Be$ and $^{15}\rm C$ on beryllium at about 60 MeV/nucleon, considering effective field theory (Halo-EFT) descriptions of $^{11}\rm Be$ and $^{15}\rm C$. We show that constraining the parameters of the Halo-EFT with ab initio predictions leads to an excellent agreement with the experimental data. This shows that Halo-EFT can be reliably used to analyze one-neutron knockout reactions measured for halo nuclei and test predictions from state-of-the-art nuclear structure models on these experimental data.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the FRIB Theory Alliance Award No. DE-SC0013617 and by LLNL under Contract No. DE-AC52-07NA27344.

Topic Theory

Authors

Dr Chloë Hebborn (MSU/LLNL) Prof. Pierre Capel

Presentation materials