In this talk, I will present results of the application of the recently derived axial currents (with and without delta excitations) to selected electroweak nuclear processes in few-nucleon systems. In particular I will focus on the Gamow-Teller matrix element of tritium β-decay. Finally I will discuss a recently proposed quantum algorithm that could be useful to study binding energies of light nuclei.
Neutrino scattering on nuclei has been investigated for several decades. It played an important role in establishing fundamentals of the theory of weak interactions and electroweak unification. Later it became a tool to study the much more subtle properties of neutrinos, such as masses and oscillations.
Most of the calculations for neutrino scattering on light nuclei were performed in...
Chiral EFT in the nucleon-nucleon (NN) sector has finally entered the precision era with a $\chi^2/{\rm datum} \sim 1$ description of NN scattering data for recent fifth order potentials. However, none of these potentials include a complete treatment of isospin-breaking effects. I present new NN potentials from chiral EFT with a complete inclusion of isospin-breaking effects up to fifth order,...
The JISP16 nucleon-nucleon force [1] arise from the Inverse Scattering Methods and was proposed as an alternative to the standard models of two-nucleon interactions. It provides a sufficient convergence of the no-core shell model [2] calculations enabling accurate predictions for nuclear binding energies and spectra of excited nuclear states with established extrapolation techniques [3–5] and...