Electron scattering experiments demonstrate that about 20% of the nucleons in nuclei have momentum greater than the nuclear Fermi momentum. This is predominantly due to close-proximity neutron-proton pairs, which interact via a strong short-range force. I will discuss these close-nucleon in few body systems and their importance to the study of nucleon-nucleon interaction, neutron stars, and...
The current paradigm to describe the nuclear interaction is within the frame of Chiral Effective Field Theory (χEFT) which organizes contributions to nuclear observables in a series of decreasing importance. Within this framework the leading contribution already requires to solve exactly the many-body Schrödinger equation with a particular Hamiltonian. Nevertheless, such calculations are...
The last few decades in nuclear structure theory have seen a rapid expansion of ab initio theories, aiming at describing the properties of nuclei starting from the inter-nucleonic interaction. Limited for a long time to very light nuclei, they are now able to access nuclei with up to A ~ 100 particles. Such an expansion relied both on the tremendous growth of computing power and novel formal...
Few years ago it was suggested by S. Tan that the properties of cold and dilute quantum gases depend on a new characteristic quantity, the ``contact'', that describes the probability of two particles coming close to each other. Generalizing this concept to nuclear physics interesting relations between e.g. the 1-body, 2-body momentum distributions, and the 2-body density can be derived. In my...