High precision decay energy measurements of low Q-value beta decays with JYFLTRAP at IGISOL

14 Jun 2024, 11:00
20m
A102 (Agora, University of Jyväskylä, Finland)

A102

Agora, University of Jyväskylä, Finland

Agora, Mattilanniemi 2, 40100 Jyväskylä, Finland
Oral Presentation Plenary

Speaker

Dr zhuang ge (UNIVERSITY OF JYVÄSKYLÄ)

Description

High-precision measurements of single β$^{±}$ decays or electron capture (EC) are the most model-independent methods to determine the absolute scale of the (anti)neutrino mass. Decay transitions with the lowest possible Q value are desirable. Currently, only three nuclei with low ground-state-to-ground-state (gs-to-gs) decay Q values are employed for direct neutrino-mass measurements [1-3]. Further explorations for low Q-value ground-state–to-excited-state (gs-to-es) β decay or EC transitions are crucial. In addition to the slightly positive Q values, the slightly negative Q values can also be of interest in seeking for a new type of transition process, like the virtual radiative “detour” transitions (RDT) [1]. A precise and accurate determination of the decay Q value is extremely important in the context of searches for the absolute (anti)neutrino mass scale or for RDT study, with potential implications for low-energy solar-neutrino detection.
Recently, multiple gs-to-gs low-Q-value beta-decay candidates ($^{72,76,77}$As, $^{75}$Se, $^{75}$Ge, $^{95-97}$Tc, $^{111}$In, $^{131}$I, $^{136}$Cs, $^{155}$Tb, and $^{159}$Dy) have been measured with JYFLTRAP at the University of Jyväskylä [1-3]. The measured high-precision Q values, coupled with nuclear energy level data, are used to determine the energetic permissibility of these low Q-value gs-to-es beta decay candidates, and ascertain the absolute Q value. Subsequently, the suitability of these beta decays with low Q values for direct searches for neutrino mass or for RDT study can be inferred. In this report, the state-of-the-art Penning Trap experimental techniques to determine the gs-to-gs Q value to a relative uncertainty of ~10$^{-9}$, along with the Q-value measurement results of select cases for neutrino mass determination, RDT study, potential implications for low-energy solar-neutrino detection. will be discussed.

Reference:
[1] Z. Ge, T. Eronen et al., Phys. Rev. C, 108:045502 (2023).
[2] Z. Ge, T. Eronen et al., Phys. Rev. Lett., 127:272301(2021).
[3] Z. Ge, T. Eronen et al., Phys. Lett. B, 832:137226 (2022).

Authors

Dr zhuang ge (UNIVERSITY OF JYVÄSKYLÄ) Dr Tommi Eronen (UNIVERSITY OF JYVÄSKYLÄ)

Co-authors

Dr Antoine DE ROUBIN (Centre d’Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 CNRS/IN2P3 - Université de Bordeaux, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France) Prof. Anu Kankainen (UNIVERSITY OF JYVÄSKYLÄ) Prof. Iain Moore (UNIVERSITY OF JYVÄSKYLÄ) Dr Jenni-Mari Kotila (UNIVERSITY OF JYVÄSKYLÄ) Dr Kostensalo Kostensalo (UNIVERSITY OF JYVÄSKYLÄ) Prof. Jouni Suhonen (University of Jyväskylä) Mr Marlom Ramalho (UNIVERSITY OF JYVÄSKYLÄ)

Presentation materials

There are no materials yet.