Speaker
Description
The atomic nucleus is one of the most complex strongly-interacting many-body Fermionic systems in nature. A main challenge in describing nuclei is understanding the short interparticle part of the nuclear wave function. Recent high-energy proton and electron scattering experiments show that short-range interactions between the nucleons form correlated, high-momentum, neutron-proton pairs, known as Short-Range Correlations (SRC). There measurements suggest that these correlations account for 20% of the nucleons in the nucleus, and 60-70% of the kinetic energy carried by nucleons in nuclei, thereby having large implications to the modification of the bound nucleon structure function and more.
In this talk I will overview the experimental studies of SRC in nuclei with emphasis on new results on asymmetric nuclei and intriguing developments of effective theories for short-range physics that follow the experimental results. Given time I will also discuss some of the wide-ranging the implications of SRCs for various phenomena, including the isospin dependence of the bound nucleon wave function, the nuclear symmetry energy and the structure of neutron stars and more.