Speaker
Kairui Zhang
(University of Oklahoma-Norman)
Description
We explore flavored resonant leptogenesis embedded in a neutrinophilic 2HDM. Successful leptogenesis is achieved by the very mildly degenerate two heavier right-handed neutrinos~(RHNs) $N_2$ and $N_3$ with a level of only $\Delta M_{32}/M_2 \sim \mathcal{O}(0.1\%-1\%)$. The lightest RHN, with a MeV–GeV mass, lies below the sphaleron freeze-out temperature and is stable, serving as a dark matter candidate. The model enables TeV-scale leptogenesis while avoiding the extreme mass degeneracy typically plagued conventional resonant leptogenesis. Baryon asymmetry, neutrino masses, and potentially even dark matter relic density can be addressed within a unified, experimentally testable framework.
Author
Kairui Zhang
(University of Oklahoma-Norman)