I will review all the searches for invisible particle at the LHC. From the standard missing momentum and energy to the more sophisticated methods with forward spectrometers as PPS at CMS and AFP at Atlas.
I will present recent results from high-resolution cosmological zoom simulations and detailed merger simulations on observational kinematic signatures originating from the effect of feedback from supermassive black holes and their merging. We show that most observed stellar kinematical signatures of massive galaxies originate from the impact of supermassive black holes in a cosmological context.
In certain models beyond the standard model, the production of Dark Matter in association to heavy flavored quarks represents a privileged channel for a discovery. The LHC experiments have now analyzed a significant amount of Run-II data, publishing significant advancements in final states involving Dark Matter and one or two top or bottom quarks, or bottom quarks from the Higgs boson decays...
Cosmological observations are a powerful probe of neutrino physics. In particular, they can be used to investigate the possibility that neutrinos have interactions beyond the standard model of particle physics, like those that emerge in dynamical realizations of the see-saw mechanism for neutrino mass generation (i.e., Majoron models). In my talk I will present constraints on the strength of...
An unambiguous manifestation of the magnification bias is the cross-correlation between two source samples with non-overlapping redshift distributions. In this talk I will present a couple of examples of measured cross-correlation signals using a background sample of H-ATLAS galaxies (SMGs) with photometric redshifts >1.2. The SMGs characteristics help to boost the sensitivity improving the...