Conveners
(DTP) M1-2 Quantum Gravity and Cosmology | Gravité quantique et cosmologie (DPT)
- Ivan Booth
Our universe is expected to emerge from an era dominated by quantum effects, for which a theory of quantum gravity is necessary. Loop Quantum Gravity, in its covariant formulation, provide a tentative yet viable framework to perform reliable computations about the physics of the early universe. In this talk I will review the strategy to be follow to apply the spinfoam formalism to cosmology. I...
I will describe recent work on gravitational collapse of dust using effective equations.
Solutions of these equations exhibit formation of horizons, with a shock wave emerging as the horizons evaporate. The lifetime of a black hole turns out to be proportional to the square of its mass.
Although black holes have recently been detected through gravitational wave observations and intensively studied through the past decades, we are far away from a complete understanding of their life cycle. In this presentation I'll show a loop quantum gravity-based model of star collapse in which the classical central singularity is replaced by a quantum bounce happening when the star energy...
Arguments from general relativity and quantum field theory suggest that black holes evaporate through Hawking radiation, but without a full quantum treatment of gravity the endpoint of the process is not yet understood. Two dimensional, semi-classical theories of gravity can be useful as toy models for studying black hole dynamics and testing predictions of quantum gravity. Of particular...
Non-perturbative quantum geometric effects in loop quantum cosmology (LQC) result in a natural bouncing scenario without any violation of energy conditions or fine tuning. In this work we study numerically an early universe scenario combining a matter-bounce with an ekpyrotic field in an LQC background setting.
We explore this unified phenomenological model for a spatially flat...