Conveners
W2-9 Contributed Talks II (DCMMP) / Conférences soumises II (DPMCM)
- Michel Gingras
We investigate the electronic dispersion and transport properties of graphene/WSe$_{2}$ heterostructures in the presence of a proximity-induced spin-orbit coupling $\lambda_{v}$, sublattice potential $\Delta$, and an off-resonant circularly polarized light of frequency $\Omega$ and effective energy term $\Delta_{\Omega}$. Using a low-energy effective Hamiltonian we find that the interplay...
Double-quantum (DQ) coherence transfers in two-pulse DQ and five-pulse DQM (double quantum modulation) EPR pulse sequences, utilized for orientation selectivity and distance measurements in biological systems using nitroxide biradicals, are investigated. Analytical expressions, along with numerical algorithms, for EPR signals are given in full details. It is shown, in general, that a finite...
Nanoscale sensors are widely used in industrial, environmental, and healthcare applications. The performance of chemical sensors depends on the host materials properties; low dimensional materials, e.g. graphene or carbon nanotubes, can be used as host materials to detect chemicals in the environment. These materials provide wide surface area per unit of volume capable of hosting...
In this work, we present a method based on deep learning (DL) to predict the structure of amorphous silicon (a-Si). The accuracy of our approach is validated through training networks to estimate the potential energy. Two architectures, multilayer perceptron (MLP) and convolutional neural network (CNN), have been examined for this purpose.
The models have been trained on a dataset generated...
It is an ongoing challenge to engineer setups in which Majorana zero modes at the ends of one-dimensional topological superconductor are well isolated which is the essence of topological protection. Recent developments have indicated that periodic deriving of a system can dynamically induce symmetries that its static counterpart does not possess [1]. We further develop the original protocol...
Flat band systems are becoming popular due to special properties. For instance, the strong correlation of electrons leads to realization of unconventional superconductivity [1]. Typically, such bands are only approximately flat and are engineered by fine tuning Vanderwaal’s structures. Here we consider Kagome and Lieb lattices with perfectly flat bands. However, at some points in the Brillouin...
Transitions between fractionalized and conventional quantum phases of matter in 2+1 dimensions are conceptually best understood within the framework of parton gauge theories, whereby the confinement of fractionalized excitations and spontaneous breaking of global symmetries in conventional phases is argued to result from the proliferation of gauge monopoles/instantons. To complement recent...
Phytoglycogen is a natural polysaccharide produced in sweet corn in the form of compact, 42 nm diameter glucose-based nanoparticles. Its highly branched, dendritic structure leads to interesting and useful properties that make the particles ideal as unique additives in personal care, nutrition and biomedical formulations. The properties of phytoglycogen can be altered through chemical...