6–11 Jun 2021
Underline Conference System
America/Toronto timezone
Welcome to the 2021 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2021!

(I) Variational Neural Annealing

8 Jun 2021, 15:15
30m
Underline Conference System

Underline Conference System

Invited Speaker / Conférencier(ère) invité(e) Symposia Day (DTP) - Quantum Machine Learning TS-2 Quantum Machine Learning (DTP) / Apprentissage automatique quantique (DPT)

Speaker

Juan Felipe Carrasquilla

Description

Many important challenges in science and technology can be cast as optimization problems. When viewed in a statistical physics framework, these can be tackled by simulated annealing, where a gradual cooling procedure helps search for ground state solutions of a target Hamiltonian. While powerful, simulated annealing is known to have prohibitively slow sampling dynamics when the optimization landscape is rough or glassy. In this talk I will show that by generalizing the target distribution with a parameterized model, an analogous annealing framework based on the variational principle can be used to search for ground state solutions. Autoregressive models such as recurrent neural networks provide ideal parameterizations since they can be exactly sampled without slow dynamics even when the model encodes a rough landscape. We implement this procedure in the classical and quantum settings on several prototypical spin glass Hamiltonians, and find that it significantly outperforms traditional simulated annealing in the asymptotic limit, illustrating the potential power of this yet unexplored route to optimization.

Author

Presentation materials

There are no materials yet.