Speaker
Description
There is strong evidence that some states in $^{10}$Be exhibit a molecular-like $\alpha$:2n:$\alpha$ configuration. Based on theoretical studies, it appears that the $6.179$ MeV 0$^{+}$ state in $^{10}$Be has a pronounced $\alpha$:2n:$\alpha$ configuration with an $\alpha$-$\alpha$ inter-distance of $3.55$ fm [Itagaki and Okabe, (2000)]. This is 1.8 times more than the corresponding value for the $^{10}$Be ground state. The 2$^{+}$ at 7.542 MeV in $^{10}$Be is believed to be the next member of this rotational band. The state at 10.2 MeV was identified as a 4$^{+}$ member in recent experiments. The algebraic model predicts that the terminating member of this band is the 6$^{+}$ state that should be found around 13 MeV. We performed an experiment to search for the 6$^{+}$ state in $^{10}$Be at around 13 MeV excitation energy in the excitation function for $^{6}$He+$\alpha$ scattering. Stringent limits on the properties of such a state have been established using Monte Carlo methods. The results of this study will be presented.