Conveners
PPD-1 : Neutrinos Physics and challenges for rare-event detection
- Marie-Cécile Piro (University of Alberta)
Description
Join Zoom Meeting
https://umontreal.zoom.us/j/98831971306?pwd=S0xDQUtIdmVMa0hQRWhXc1dvVlA0QT09
Meeting ID: 988 3197 1306
Password: 818465
One tap mobile
+13126266799,,98831971306#,,1#,818465# US (Chicago)
+13462487799,,98831971306#,,1#,818465# US (Houston)
Dial by your location
+1 312 626 6799 US (Chicago)
+1 346 248 7799 US (Houston)
+1 646 558 8656 US (New York)
+1 669 900 6833 US (San Jose)
+1 253 215 8782 US (Tacoma)
+1 301 715 8592 US (Germantown)
Meeting ID: 988 3197 1306
Password: 818465
Find your local number: https://umontreal.zoom.us/u/adqxv9WKnB
Searching for low-mass WIMPs typically relies on ionization from a nuclear recoil in a detector. Calibration of the detector response at different energies can easily be done with charged particles with radioactive sources, but in this case the charged particles give energy directly to the detector material's electrons, not via a nuclear recoil. The ratio of detector response to nuclear and...
The Scintillating Bubble Chamber (SBC) experiment is a novel low-background technique used to directly detect low-mass WIMPs and coherent elastic neutrino nuclear scattering of reactor neutrinos (CEvNS). The detector combines the strengths of bubble chambers with those of scintillation detectors. Nucleation of bubbles due to nuclear recoil of target fluid atoms provide information about the...
P-type Point Contact (PPC) germanium detectors are used in rare-event searches, such as neutrinoless double-beta decay and dark matter, due to their low radioactive backgrounds and low energy thresholds. We describe our work to determine the location of energy depositions in PPC detectors using the charge signal that is collected from the single point contact electrode. By comparing charge...
nEXO aims to search for neutrinoless double-beta decay of Xe-136. Detection of such an event significantly improves our understanding of the nature of the elusive neutrinos, showing that they are Majorana particles (their own antiparticle). Additionally, this would mean the violation of lepton number conservation, opening new avenues for physics beyond the Standard model. To facilitate this,...
Located within the SNOLAB facility at VALE’s Creighton mine in Sudbury, Ontario, SNO+ is an experiment that studies the properties and behaviour of neutrinos. With a radius of 6m, the detector is composed of a spherical acrylic shell that has been filled with ultrapure water, which is now being replaced with linear alkylbenzene (LAB) and poly(p-phenylene oxide) (PPO), and finally with LAB...
The nEXO experiment is being designed to search for neutrinoless double beta decays in 5 tonnes of liquid xenon enriched in Xe-136. Events in the detector will result in the observation of both charge signals and scintillation light. This light at 175 nm will be detected using UV-sensitive silicon photomultipliers (SiPM) covering an area of about 4.5 m^2. To achieve better than 1% energy...
Long baseline neutrino experiments, such as the Tokai-to-Kamioka experiment (T2K), study the phenomenon of neutrino oscillations using beams of accelerator produced muon neutrinos or muon antineutrinos. With the discovery of the muon neutrino to electron neutrino oscillation channel in 2014, the T2K experiment established the possibility to search for CP violation in neutrino oscillations. ...