Speaker
Description
This work investigates Buchdahl transformations within the framework of Einstein and Einstein-Scalar theories. Specifically, we establish that the recently proposed Schwarzschild–Levi-Civita spacetime can be obtained by means of a Buchdahl transformation of the Schwarschild metric along the spacelike Killing vector. The study combines Buchdahl’s original theorem with the Kerr–Schild representation. In doing so, we construct new vacuum-rotating black holes in higher dimensions which can be viewed as the Levi-Civita extensions of the Myers–Perry geometries. In the context of the Einstein-Scalar system, the paper extends the corresponding Buchdahl theorem to scenarios where a static vacuum seed configuration, transformed with respect to a spacelike Killing vector, generates a hairy black hole spacetime. We analyze the geometrical features of these spacetimes and investigate how a change of frame, via conformal transformations, leads to a new family of black hole spacetimes within the Einstein-Conformal-Scalar system.