While the large scale structures formation is dominated by Cold Dark Matter (CDM) field evolution, we generally have only access to baryonic tracer like galaxies. In particular, Mexico is involved in three of the most important galaxy surveys of next decade: DESI, SDSS-V and LSST. The usual method is to link the galaxy distribution to the CDM density field using a linear bias. We propose to...
The interior of compact stars is usually divided into two major parts, the outer part called crust and the inner part called core. There are several possibilities for the composition of these parts. One is a hybrid star, in which the crust contains nuclear matter, while the inner core contains quark matter. Since at large baryon densities one can work with effective models, and nuclear and...
A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious objects in the universe, with a radius of the order of 10 km and masses that can reach two solar masses. In 2017, a gravitational wave was detected (GW170817) and its source was identified as the merger of two neutron stars. The same event was seen in X-ray, gamma-ray, UV, IR, radio frequency and even in...
The equation of state (EoS) of strongly interacting matter for finite chemical potentials cannot be calculated from first principles (lattice QCD) so one have to rely on effective theories like the Polyakov-Nambu-Jona-Lasinio model. Recently it has been shown that they can reproduce the lattice calculations at vanishing chemical potential and provide therefore a solid basis for the...
The detection of gravitational waves and accompanying EM signals from a binary neutron star merger, GW 170817 was one of the most remarkable scientific achievements of the last decade. The discovery confirmed numerous long standing predictions, ranging from the mergers being the cosmic foundries of r-process elements to the origin of short gamma-ray bursts. It also revealed the potential of...