Conveners
Dark matter
- Nicolás Bernal (Universidad Antonio Nariño)
- Oscar Alberto ZAPATA NOREÑA
Presentation materials
The remarkable discovery of gravitational waves from binary black hole mergers has given us a new way to study our universe. The origin of the black hole binaries remains unclear, I investigate whether information on the effective spin of binary black hole mergers from the LIGO-Virgo gravitational wave detections can be used to discriminate primordial versus astrophysical black holes. I will...
Indirect dark matter detection is a powerful search method that allows to explore a very wide range of the dark matter mass spectrum. I will present our recent results in which we exploit multi-messenger astrophysical observations to explore the allowed parameter space for various archetypal dark matter candidates with masses in the range 10 GeV to 10^16 GeV. Throughout my talk, I will...
We perform a model independent study of freeze-in of massive particle dark matter (DM) by adopting an effective field theory framework. Considering the dark matter to be a gauge singlet Majorana fermion, odd under a stabilising symmetry
In this talk we present the phenomenology of the Z5 model for two-component dark matter. This model, which can be seen as an extension of the well-known singlet scalar model, features two complex scalar fields--the dark matter particles--that are Standard Model singlets but have different charges under a Z5 symmetry. The interactions allowed by the Z5 give rise to novel processes between the...
We study a scalar dark matter (DM) model with two DM species coupled to standard model (SM) particles via a sub-GeV dark photon. The two DM candidates can be produced at fixed-target experiment a la Beam-Dump. Predictions for signal and backgrounds are obtained with the help of MadDump and NuWro Montecarlo generators. We explore the potential reach on the sensitivity of DUNE near detector...
A possibility to attempt at observing Dark Matter is to produce it at high energy colliders such as the Large Hadron Collider (LHC). LHC proton-proton collisions might result in the production of WIMPS in association with one or more QCD jets, photons as well as other detectable SM debris. Since WIMPs are electrically neutral and cosmologically stable massive particles, they manifest at...
Dark Matter and neutrinos are one of the most puzzling components of the Universe. Neutrino masses can be explained by radiative processes where Dark Matter particles are involved. Such models are known as Scotogenic DM models. The Dark Matter candidate in these models are stable thanks to the same symmetry that protect the radiative process. We present a realization of the scotogenic model...
We propose a general method to find anomaly free Abelian standard model extensions with radiative Dirac netrino masses and DM matter candidates
We present a multicomponent dark sector model, comprised of a fermionic and a scalar dark matter candidate. In the scalar sector, the dark matter candidate is the Inert Doublet Model, while the fermionic candidate is a mix of fields in different representations of the
The evaporation of primordial black holes (PBH) with masses ranging from ~10^-1 to ~10^9 g could have generated the whole observed dark matter (DM) relic density. It is typically assumed that after being produced, its abundance freezes and remains constant. However, thermalization and number-changing processes in the dark sector can have a strong impact, in particular enhancing the DM...