24–26 May 2021
University of Pittsburgh
US/Eastern timezone

Distribution of supersymmetry mu parameter and Peccei-Quinn scale f_a from the landscape

25 May 2021, 17:00
15m
SUSY SUSY II

Speaker

Robert Wiley Deal (University of Oklahoma-Norman)

Description

A scan of soft SUSY breaking parameters within the string theory landscape with the MSSM assumed as the low energy effective field theory– using a power-law draw to large soft terms coupled with an anthropic selection of a derived weak scale to be within a factor four of our measured value– predicts a peak probability of $m_h \simeq 125 \text{ GeV}$ with sparticles masses typically beyond the reach of LHC Run 2. Such multiverse simulations usually assume a fixed value of the SUSY conserving superpotential $\mu$ parameter to be within the assumed anthropic range, $\mu < \sim 350 \text{ GeV}$. However, depending on the assumed solution to the SUSY $\mu$ problem, the expected $\mu$ term distribution can actually be derived. We examine two solutions to the SUSY $\mu$ problem. The first is the gravity-safe Peccei-Quinn (GSPQ) model based on an assumed $\mathbb{Z}_{24}^R$ discrete $R$-symmetry which allows a gravity-safe accidental, approximate Peccei-Quinn global symmetry to emerge which also solves the strong CP problem. The second case is the Giudice-Masiero solution wherein the $\mu$ term effectively acts as a soft term and has a linear draw to large values. For the first case, we also present the expected landscape distribution for the PQ scale $f_a$; in this case, weak scale anthropics limits its range to the cosmological sweet zone of around $f_a ∼ 10^{11} \text{ GeV}$.

Authors

Howard Baer (University of Oklahoma) Robert Wiley Deal (University of Oklahoma-Norman) Dibyashree Sengupta (University of Oklahoma) Vernon Barger (University of Wisconsin, Madison)

Presentation materials