GSPQ	Giudice-Masiero	Conclusion

Distribution of supersymmetry μ parameter and Peccei-Quinn scale f_a from the landscape arXiv: 2104.03803

H. Baer V. Barger D. Sengupta R. Wiley Deal rwileydeal@ou.edu

University of Oklahoma

May 25, 2021

Intro	GSPQ	Giudice-Masiero	Conclusion
0000			

Intro

Intro	GSPQ	Giudice-Masiero	Conclusion
0000			

SUSY μ problem

- SUSY-preserving term W ⊃ µH_uH_d generically suggests µ ∼ O(m_P)
- Phenomenology requires µ ~ O(100) GeV
- Usually forbid μ by some symmetry, then generate effective μ term by some mechanism to give weak scale value
- Can generically measure tuning by fixing m_Z to experimental value - each EWSB contribution should be comparable to m_Z!

SUSY EWSB conditions

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - \left(m_{H_u}^2 - \Sigma_u^u\right)\tan^2\beta}{\tan^2\beta - 1} - \mu^2$$
$$\simeq -m_{H_u}^2 - \Sigma_u^u\left(\tilde{t_{1,2}}\right) - \mu^2$$

Δ_{EW} definition

$$\Delta_{\sf EW}\equiv |{\sf max} \; {\sf EWSB} \; {\sf rhs}|/(m_Z^2/2)$$

May 25, 2021 2 / 14

Intro	GSPQ	Giudice-Masiero	Conclusion
0000			

The string landscape

- String landscape provides $\gtrsim \mathcal{O}(10^{500})$ vacua need statistical studies
- Perturbative SUSY breaking assumed a power law pull on soft terms, with exponent $2n_F + n_D 1$ depending on hidden sector (Denef & Douglas)
- Arguments by Agrawal et al. (Phys. Rev. D 57, 5480) suggest that if m_{weak} were 2-5 times larger, atoms would be unable to form
- Veto solutions with weak scale outside those bounds (anthropics)
- Distribution of Λ independent of SUSY breaking scale allows us to ignore f_{CC} and focus on f_{SUSY} and f_{EWFT}

Landscape distributions

$$\begin{split} f_{SUSY} &\sim m_{\text{soft}}^{2n_F + n_D - 1} \\ f_{EWFT} &\sim \Theta(N \cdot m_{\text{weak}}^{OU} - m_{\text{weak}}^{PU}) \\ dN_{\text{vac}}(m_{\text{hidden}}^2, m_{\text{weak}}, \Lambda) &= f_{SUSY} \cdot f_{EWFT} \cdot f_{CC} \cdot dm_{\text{hidden}}^2 \end{split}$$

(arXiv: hep-th/0405279)

Intro	GSPQ	Giudice-Masiero	Conclusion
0000			
0000	0000000	000	000

Our procedure

- Take 2 solutions to μ problem:
 - Gravity-Safe Peccei-Quinn (GSPQ)
 - 2 Giudice-Masiero (GM)
- Scan over appropriate soft terms, and veto points with $m_{weak}^{PU} > 4 m_{weak}^{OU}$ (corresponds to $\Delta_{EW} \gtrsim 30$)
- Veto points with either CCB minima or no EWSB
- We end up with a µ distribution predicted by string landscape
- Since GSPQ also has PQ sector, also have f_a distribution

Landscape distributions

 $f_{SUSY} \sim m_{
m soft}^{2n_F+n_D-1}$ $f_{EWFT} \sim \Theta(30 - \Delta_{
m EW})$

(see e.g. Baer et al. arXiv: 2005.13577)

GSPQ	Giudice-Masiero	Conclusion
000000		

GSPQ

	GSPQ	Giudice-Masiero	Conclusion
	000000		
GSPQ Model			

■ GSPQ model introduces PQ fields X, Y charged under Z^R₂₄ where U(1)_{PQ} emerges as an accidental, approximate global symmetry (see e.g. Baer, Barger, Sengupta arXiv: 1810.03713)

$$W \supset \frac{\lambda_{\mu}}{m_{P}} X^{2} H_{u} H_{d} + \frac{f}{m_{P}} X^{3} Y$$

■ Additional non-renormalizable terms suppressed by $O(m_P^8)$

F-term and soft terms give relevant contributions:

$$\begin{split} V_F &\supset |f \phi_X^3/m_P|^2 + |3f \phi_X^2 \phi_Y/m_P|^2, \\ V_{\text{soft}} &\supset m_X^2 |\phi_X|^2 + m_Y^2 |\phi_Y|^2 + (f A_f \phi_X^3 \phi_Y/m_P + \text{h.c.}) \end{split}$$

Breaking Z^R₂₄ with large -A_f (also breaking PQ) induces μ term, with μ ~ ^{λμ}/_{m_P} v²_X
 Gives us μ term and a DFSZ axion

GSPQ	Giudice-Masiero	Conclusion
000000		

Minimization

$V_{\rm GSPQ}$ minimization conditions

$$0 = \frac{9|f|^2}{m_P^2} \left| v_X^2 \right|^2 v_Y + \frac{f^* A_f^*}{m_P} v_X^{*3} + m_Y^2 v_Y$$

$$0 = \frac{3|f|^2}{m_P^2} \left| v_X^2 \right|^2 v_X + \frac{18|f|^2}{m_P^2} \left| v_X \right|^2 \left| v_Y \right|^2 v_X + \frac{3f^* A_f^*}{m_P} v_X^{*2} v_Y^* + m_X^2 v_X$$

- Taking $A_f, f \in \mathbb{R}$ gives $v_X, v_Y \in \mathbb{R}$
- Further assume common scalar mass $m_X = m_Y = m_{3/2} \equiv m_0$ and set f = 1
- Solving resulting minimization conditions for given m_0 , A_f gives values of v_X , v_Y
- This then gives us $\mu = \frac{\lambda_{\mu}}{m_P} v_X^2$ for a given $\lambda_{\mu} \sim \mathcal{O}(0.01 1)$
- No solutions for $|A_f|/m_0 < \sqrt{12}$ gives lower bound for μ for given $A_f!$

GSPQ	Giudice-Masiero	Conclusion
0000000		

Parameter space scan

 Non-universal Higgs SUSY model (NUHM2) parameter space specified by

 $m_0, m_{1/2}, A_0, \tan \beta, \mu, m_A$

- GSPQ sector adopts $m_X = m_Y = m_0$ and $A_f = 2.5A_0$
- Soft terms take n = 1 statistical draw, tan β takes uniform statistical draw
- 3 samples, taking $\lambda_{\mu} = 0.05, 0.1, 0.2$
- Calculate v_X, v_Y from minimization conditions, then use derived μ values in Isajet to calculate MSSM spectra and Δ_{EW}

Also calculate
$$f_a = \sqrt{v_X^2 + 9v_Y^2}$$

Parameter space

 $\begin{array}{l} m_0 \in [0.1, 20] \; \text{TeV} \\ m_{1/2} \in [0.5, 5] \; \text{TeV} \\ -A_0 \in [0, 50] \; \text{TeV} \\ m_A \in [0.3, 10] \; \text{TeV} \\ \tan \beta \in [3, 60] \end{array}$

GSPQ	Giudice-Masiero	Conclusion
0000000		

Results ($\lambda_{\mu} = 0.1$)

Anthropically allowed points (blowup of left fig)

	GSPQ	Giudice-Masiero	Conclusion
0000	0000000	000	000

Results ($\lambda_{\mu} = 0.1$)

0000 000000 000 000		GSPQ	Giudice-Masiero	Conclusion
	0000	000000	000	000

Results (comparing λ_{μ})

GSPQ	Giudice-Masiero	Conclusion
	000	

Giudice-Masiero

GSPQ	Giudice-Masiero	Conclusion
	000	

Giudice-Masiero

- Most common mechanism is Giudice-Masiero (GM) mechanism
- MSSM µ term forbidden by some symmetry, but Kähler potential has Planck suppressed coupling to hidden sector h
- F-term of *h* acquires VEV ~ m_{hidden}^2 ⇒ induces μ term with $\mu \sim \lambda_{GM} \frac{m_{\text{hidden}}^2}{m_{\mu}}$
- Since μ_{GM} comes from single *F*-term, takes soft term n = 1 statistical draw
- Take $\lambda_{GM} = 1$
- Similar procedure to GSPQ (same anthropics)

GM Kähler potential

$$K \supset rac{\lambda_{GM}}{m_P} h^\dagger H_u H_d + ext{h.c.}$$

Parameter space

$$\begin{split} m_0 &\in [0.1, 20] \text{ TeV} \\ m_{1/2} &\in [0.5, 5] \text{ TeV} \\ -A_0 &\in [0, 50] \text{ TeV} \\ \mu &\in [25, 450] \text{ GeV} \\ m_A &\in [0.3, 10] \text{ TeV} \\ \tan \beta &\in [3, 60] \end{split}$$

GSPQ	Giudice-Masiero	Conclusion
	000	

Results

GSPQ	Giudice-Masiero	Conclusion
		000

Conclusion

GSPQ	Giudice-Masiero	Conclusion
		000

Summary

- Both GSPQ and Giudice-Masiero solutions to μ problem have phenomenologically viable distributions in the landscape
- $m_h \sim 125$ GeV after anthropic selection in both, and sparticles tend to be pulled beyond current LHC reach
- In addition, GSPQ predicts PQ scale neatly confined to $f_a \sim (0.5 2.5) \times 10^{11} \text{ GeV}$

Questions?

GSPQ	Giudice-Masiero	Conclusion
		000

Summary

Thanks!

