Conveners
Position Sensitive Fast Timing Detectors 1
- Peter Hobson (Queen mary University London)
- Laura Gonella (University of Birmingham (UK))
Low Gain Avalanche Detectors (LGADs) are thin silicon detectors (ranging from 20 to 50 um in thickness) with moderate internal signal amplification (up to a gain of ~50). LGADs are capable of providing measurements of minimum-ionizing particles with time resolution as good as 17 pico-seconds. In addition, the fast rise time (~500ps) and short full charge collection time (~1ns) of LGADs are...
AC-coupled Low- Gain Avalanche Detectors (AC-LGAD) are designed as detectors with 100% fill factor for high precision 4D-tracking, which have been studied and researched by many institutes including BNL、FBK et al. Their results show that timing resolution of AC-LGAD can be lower than 50ps and spatial resolution can be better than 10um. Standard LGAD sensors of the Institute of High Energy...
Low Gain Avalanche Detectors (LGADs) are n-on-p silicon sensors with an extra doped p-layer below the n-p junction which provides signal amplification. When the primary electrons reach the amplification region new electron-hole pairs are created that drift towards the p+ region increasing the generated signal. The moderate gain of these sensors, together with the relatively thin active region,...
The increase of the particle flux (pile-up) at the HL-LHC with instantaneous luminosities up to L ~ 7.5 × 10^34 cm^-2s^-1 will have a severe impact on the ATLAS detector reconstruction and trigger performance. The end-cap and forward region where the liquid Argon calorimeter has coarser granularity and the inner tracker has poorer momentum resolution will be particularly affected. A High...