Conveners
Neutrinos: I - Humphrey Auditorium
- Shigeo Kimura
Neutrinos: II - Humphrey Auditorium
- Thomas McElroy
Neutrinos: III - BioSci 1102
- steven prohira (The Ohio State University)
Neutrinos: IV - BioSci 1102
- Soebur Razzaque
Neutrinos: V - Humphrey Auditorium
- Qinrui Liu (Queen's University)
Neutrinos: VI - Humphrey Auditorium
- Lu Lu (Chiba University)
Neutrinos: VII - BioSci 1101
- Abigail Vieregg (University of Chicago)
The IceCube Neutrino Observatory is the world largest neutrino telescope, instrumenting one cubic kilometer of Antarctic ice. IceCube started its operation in 2011 and a diffuse flux of neutrinos was discovered in 2013. To this day the sources of those neutrinos are still largely unknown. One of the most promising source candidates are blazars, Active Galactic Nuclei with jets aligned towards...
The collected data of IceCube, a cubic kilometre neutrino detector array in the antarctic ice, reveal a diffuse flux of astrophysical neutrinos. The sources of these neutrinos however have yet to be discovered. Recently, high-energy neutrino alerts, sent out by IceCube in real time, were observed in coincidence with two (likely) Tidal Disruption Events (TDEs). A follow-up study found a...
Blazars are potential candidates of cosmic-ray acceleration up to ultrahigh energies (> 1 EeV). For an efficient cosmic-ray injection from blazars, 𝑝𝛾 collisions with the extragalactic background light and cosmic microwave background can produce gamma-ray and neutrino fluxes in the TeV and PeV-EeV energies, respectively. Such a line-of-sight cosmogenic gamma-ray flux can contribute to the...
With the successful detection of cosmic high-energy neutrinos and the first high-probability association of such a neutrino to the blazar TXS 0506+056 leads to the anticipation that active galactic nuclei could soon be identified as point source emitters of high-energy neutrinos. This opens up new challenges for a joint explanation of the observed electromagnetic spectrum together with...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for 0νββ decay that has been able to reach the one-tonne mass scale. The detector, located at the LNGS in Italy, consists of an array of 988 TeO2 crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of...
LEGEND-1000 [1] is a next-generation ton-scale experiment searching for neutrinoless double beta decay ($0\nu\beta\beta$) of $^{76}$Ge using p-type, high-purity ICPC germanium semiconductor detectors. The experiment is based on 1000 kg of Ge detectors enriched to more than 90$\%$ in $^{76}$Ge. The detectors are operated submerged in liquid argon (LAr), which act as a cooling medium and,...
Neutrino oscillations remain the sole laboratory signals of Beyond the Standard Model physics and the IceCube Neutrino Observatory detects tens of thousands of atmospheric neutrinos per year which are used for oscillation analyses. Beyond particle physics, neutrino oscillations play an important role for interpreting any astrophysical neutrino fluxes, due to the impact of oscillations over...
I present a new, open-source, pure Python program, MUTE (MUon inTensity codE) (A. Fedynitch, W. Woodley, M.-C. Piro 2022 ApJ 928 27). MUTE combines the state-of-the-art codes MCEq (Matrix Cascade Equation) and PROPOSAL (PRopagator with Optimal Precision and Optimised Speed for All Leptons) to compute the cosmic ray cascades in the atmosphere and the propagation of muons through matter in...
At the highest energies, the neutrino nucleon cross-section $\sigma$ can only be measured via interaction of ultrahigh energy (UHE) neutrinos with target particles in the Earth. The energies involved ($E_{\nu} \geq 10^{16}$ eV) probe $\sqrt{s}$ higher than anything possible at current colliders. Measurement of $\sigma$ at these energies will directly probe new physics models. Many current and...
The detection of ultra-high-energy neutrinos, with energies above 100 PeV, is requisite to fully understand the high-energy Universe. Their discovery might soon be within reach of upcoming neutrino telescopes, yet in-depth discovery forecasts for their astrophysical sources are largely unavailable. We present a robust framework to compute the statistical significance of source discovery via...
The measurement of high-energy neutrino-matter interactions furthers our knowledge of nucleon structure and allows us to test proposals beyond the Standard Model: the higher the energy, the more piercing the probe. Ultra-high-energy (UHE) cosmic neutrinos, with EeV-scale energies (1 EeV = 10^{18} eV), offer the ultimate high-energy probes of neutrino physics. For fifty years, they have evaded...
The IceCube Neutrino Observatory has sensitivity to sterile neutrino oscillations through matter-enhanced oscillation occurring in the few TeV energy range for eV$^{2}$-scale mass-squared splittings. I will present previous measurements of these effects in $\nu_\mu$ disappearance, which has strong sensitivity to the mixing angle $\theta_{24}$ via $\bar{\nu}_\mu\rightarrow\bar{\nu}_s$...
Beyond the Standard Model (BSM) interactions in the neutrino sector have been of much interest in cosmology and astroparticle physics. We developed a Monte Carlo code to investigate the neutrino time delay distribution caused by BSM interactions en route to the observer. While we find excellent agreement for small optical depths, the optically thick limit show features that are not described...
Neutrinos remain mysterious. As an example, enhanced self-interactions (νSI), which would have broad implications, are allowed. At the high neutrino densities within core-collapse supernovae, νSI should be important, but robust observables have been lacking. We show that νSI make neutrinos form a tightly coupled fluid that expands under relativistic hydrodynamics. The outflow becomes either a...
The IceCube Neutrino Observatory is a cubic kilometer-sized detector designed to detect astrophysical neutrinos. However, cosmic rays interacting in the atmosphere produce a significant number of muons in the southern equatorial sky. This work outlines a new dataset with large background rejection and high signal efficiency using a boosted decision tree. This dataset is also effective at...
The IceCube Neutrino Observatory has been observing a diffuse flux of high-energy astrophysical neutrinos in multiple detection channels since 2013. These detection channels are complementary with respect to event topologies such as muon tracks and cascades, the sensitive energy range, and backgrounds. In this analysis we combine two of these channels, through-going muon tracks and contained...
The IceCube Neutrino Observatory has been observing a diffuse astrophysical neutrino flux, measuring the energy spectrum and flavor composition in different detection channels. With about 10 years of data, we combine the detection channels focused on the event topologies of tracks and cascades to measure the energy spectrum and flavor composition with improved precision compared to the...
Astrophysical neutrinos are an important piece of the TeV multimessenger astrophysics puzzle. However, the significant background of atmospheric neutrinos seen in our neutrino observatories makes it difficult to study neutrino sources below 100 TeV in the southern sky Looking for starting events from the southern sky with IceCube allows us to reject not only events from incoming atmospheric...
Neutrino astronomy is a rapidly evolving discipline probed by large-volume neutrino detectors such as the ones being built by the KM3NeT collaboration in the Mediterranean Sea together instrumenting a cubic kilometre of seawater. ARCA is the high-energy unit of this network. In its full configuration of 230 lines with > 10^5 photomultiplier tubes installed, it will be sensitive to neutrinos in...
The Pacific Ocean Neutrino Experiment (P-ONE) is a proposed cubic kilometre class neutrino telescope two hundred kilometres off the coast of Vancouver Island, Canada. A partnership with Ocean Network Canada (ONC) brings extensive knowledge, experience, and infrastructure to build a novel large-scale neutrino telescope in the ocean. P-ONE's primary scientific goals are to advance the field of...
We present the current status of the Radar Echo Telescope, an instrument to detect neutrinos of the highest energies. First, we present the status of the Radar Echo Telescope for Cosmic Rays (RET-CR), a prototype instrument that seeks to test the radar echo method in nature, using the in-ice cascade produced by the core of a cosmic-ray air shower as it impacts the ice. We present the current...
The Radar Echo Telescope for Neutrinos (RET-N) is a proposed experiment to detect neutrinos with energies above ~10 PeV utilizing the radar echo method in polar ice. RET-N will consist of a phased-array radio transmitter and an array of receivers, aiming to detect the ionization trail from an ultra-high-energy neutrino interaction in-ice via active radar sounding. The received signal is a...
The Askaryan Radio Array (ARA) in Antarctica is designed to detect >10 PeV neutrinos through the radiation emitted by the particle showers they initiate. ARA consists of five stations each made up of 8 horizontally-polarized and 8 vertically-polarized antennas deployed on 4 strings in the Antarctic ice. These antennas detect the radio frequency pulses associated with Askaryan emission. An...