Speaker
Description
The newly established CONUS ($\bf CO$herent $\bf N$e$\bf U$trino Nucleus $\bf S$cattering) project by the Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, will be presented. The project aims at detecting coherent elastic neutrino nucleus scattering (CE$\nu$NS) with high-purity Germanium (Ge) detectors with an extremely low threshold, surrounded by an elaborated shield and exposed to a very high flux of anti-neutrinos from a nuclear power plant. CE$\nu$NS is one out of six neutrino interactions predicted by the standard model, but the only one yet to be detected. While the coherence condition, fulfilled for (anti)neutrinos with energies below 30 MeV, enhances the cross section, only a fraction of the nucleus recoil energy is available for detection via ionization (quenching). Thus, a signal is expected at energies below a few keV and for Ge detectors such low detection thresholds are just achieved in recent technological developments.
For the CONUS project, up to four of these low threshold Ge detectors are to be setup at the commercial nuclear power plant at Brokdorf (Germany). The thermal power output of the plant of 3.9 GW and a high duty cycle as well as the experimental site closer than 20 m to the reactor core guarantee a high anti-neutrino flux with energies well within the coherent regime. At the site an overburden of up to several tens of meters of water equivalent provides shielding against cosmic rays. Furthermore, a massive shell-structured shield including an active muon veto and passive shield layers is built up. With these measures it is aimed at to achieve a background index of 1 count/(daykeVkg) at energies below a few keV for a high signal-to-background ratio.
The presentation will cover the design, preparations, realization and status of the experiment.