

- The **CONUS** Experiment - **CO**herent elastic **NeU**trino nucleus **S**cattering

C. Buck, <u>J. Hakenmüller</u>, G. Heusser, M. Lindner, W. Maneschg, T. Rink, H. Strecker, T. Schierhuber and V. Wagner Max-Planck-Institut für Kernphysik, Heidelberg

> K. Fülber and R. Wink Preussen Elektra GmbH, Kernkraftwerk Brokdorf

TAUP Sudbury, July 24-28, 2017

Coherent elastic neutrino nucleus scattering (CE ν NS)

Physics of $CE\nu NS$

- neutrinos of all flavors interact simultaneously with all nuclei in a nucleus: $\frac{d\sigma}{d\Omega} = \frac{G_{f}^{2}}{16\pi^{2}} \frac{Q_{W}^{2}}{E_{\nu}^{2}} (1 + \cos\theta) F^{2}(Q^{2}) \text{ with } Q_{W} = N - (1 - 4\sin^{2}\theta_{W}) Z$ form factor ≈ 1 for low momentum transfer
- $4sin^2\theta_W \approx 0.944 \Rightarrow$ number of neutrons N in nucleus is important: $\sigma \propto N^2$
- e.g. more than 10x larger σ than for inverse beta decay (E_{ν} up to 50 MeV)
- coherence condition: λ (de Broglie) of mom. transfer > size of atom $\Rightarrow E_{\nu} < 50 \text{ MeV}$ (full coherency for Ge: $E_{\nu} < 30 \text{ MeV}$)
- predicted 1974: D.Z. Freedman, Phys. Rev. 9(1974)5, so far undetected

Relevance of ${\rm CE}\nu{\rm NS}$

- $\bullet \ \ \text{precision measurements} \rightarrow \textbf{tests of Standard Model}$
- deviations \rightarrow physics beyond Standard Model
- neutrino floor in dark matter experiments: similar recoil of WIMPs and vs
- Star collapse: 99% of grav. binding energy carried away by $\nu s \rightarrow$ explosion & ν scattering

Requirements for Detection of $\text{CE}\nu\text{NS}$

Observable

• recoil energy of nucleus hit by ν $T_{max} \approx \frac{2E_{\nu}^2}{m_{nuc}}$ with $m_{nuc} = m_{Neutron}(N+Z)$ \Rightarrow push-pull situation: $\frac{d\sigma}{d\Omega} \propto N^2$ vs. $T_{max} \propto \frac{1}{m_{nuc}}$ e.g. for $E_{\nu} = 10$ MeV: maximal recoil of T_{max} =3 keV in Germanium

BUT quenching factor: not all energy converted into ionization energy (Lindhard Theory)

e.g. for Ge up to 80% loss \Rightarrow signal < 600 eV

Requirements for CONUS

- **1** strong neutrino source with E_{ν} in coherent regime \rightarrow commercial nuclear power plant
- detector with low enough energy threshold → low threshold point contact Ge detectors
- Special background suppression → shell-like passive shield + active muon veto

< ロト < 同ト < ヨト < ヨト

Janina Hakenmüller (MPIK Heidelberg)

The Source: Nuclear Reactor

commercial nuclear power plant in Brokdorf (Germany)

- max. thermal power: 3.9 GW, high duty cycle
- distance to reactor core: 17 m
- expected $\bar{\nu}$ flux: $O(10^{13} s^{-1} cm^{-2})$
- $\bar{\nu}$ energy up to 8 MeV \Rightarrow purely coherent
- overburden: $\sim 10-45 \text{ m w.e.}$
- (reactor ON reactor OFF) spectrum for background reduction

https://de.wikipedia.org/wiki/Kernkraftwerk_Brokdorf

(日) (同) (三) (三)

Detectors for CONUS: Threshold + Quenching

Expected signal (feasibility study: T. Rink, W. Maneschg, M. Lindner (2016))

- Assumptions:
 - Background level: 1 kg⁻¹d⁻¹keV⁻¹
 - 3 GW reactor at 15 m $\rightarrow \bar{\nu}$ flux: 2.4 $\cdot 10^{13}\, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

	$E_{\mathit{lon}}^{\mathit{Th}}[keV_{\mathit{ee}}]$	Qf=0.15	Qf=best fit	Qf=0.2
\Rightarrow S/B ratios:	0.30	0.4	1.8	4.0
	0.24	3.2	8.6	16
	0.18	22	35	59

Requirements for Ge diodes

- low energy threshold & low-background ⇒ high-purity point contact Ge detectors (prestudy on modified BEGes at MPIK, M. Salathe [4])
- for CONUS:
 - ${\sim}4\,kg$ target mass
 - low-background:
 - * screening of internal parts
 - * close cooperation for Cu cryostats

イロト イヨト イヨト イヨト

* storage underground

Shield Concept at shallow Depth: GIOVE

$\begin{array}{ c c c c c c } \hline detector & depth & \mu \ flux & Bkg \ rate \ [45,50] \ keV \\ \hline [m \ w.e.] & reduction & [kg^{-1}d^{-1}keV^{-1}] \\ \hline \\ \hline \\ Gemma-I[5] & 70 & \sim 10 & 2.1 \pm 0.7 \\ \hline \\ \hline \\ Texono[6] & 25 & \sim 4 & 1.3 \pm 0.5 \\ \hline \\ \hline \\ GIOVE[7] & 15 & \sim 2-3 & 0.4 \pm 0.1 \\ \hline \end{array}$	Comparison of	background lev	vels		
		detector	depth [m w.e.]	μ flux reduction	Bkg rate [45,50] keV $[kg^{-1}d^{-1}keV^{-1}]$
Itexono[0] 25 \sim 4 1.3 \pm 0.5 GIOVE[7] 15 \sim 2-3 0.4 \pm 0.1		Gemma-I[5]	70	~ 10	2.1 ± 0.7
		GIOVE[7]	25 15	\sim 4 \sim 2-3	$ 1.3 \pm 0.5 \\ 0.4 \pm 0.1 $

G. Heusser et al., 2015 [7]

GIOVE: Ge Spectrometer with Inner and Outer VEto

- coaxial high-purity Ge Spectrometer, m_{active}=(1.8±0.1) kg
- active μ veto: plastic scintillator with PMTs veto efficiency: ~99% (dead time loss: ~2%)
- passive shield:
 - lead and copper: against nat. radioactivity
 - borated polyethylene: to moderate and capture neutrons
- main purpose: material screening

 \Rightarrow with overburden of 5-6 m "virtual depth" of several 100 m w.e. achieved \Rightarrow optimization of shield for CONUS with focus on low energies

Janina Hakenmüller (MPIK Heidelberg)

CONUS Shield

Moderate and capture neutrons: Polyethylene plates with boron from boron acid, boron acid enriched in ¹⁰B (equivalent to 3% nat. boron)

Shield layers

- most inner layer: lead \Rightarrow suppresses bremsstrahlung's continuum induced by μ s
- all materials carefully selected with screening detectors (@MPIK and @LNGS)
- testing at Low Level Laboratory at MPIK (15 m w.e.):
 - mechanical tests
 - muon veto performance (with coaxial high-purity Ge spectrometer CONRAD)
 - radiopurity of shield (with CONRAD)

CONRAD Detector in CONUS Shield - during assembly

Muon-induced Background in CONUS Shield with CONRAD Detector

Bremsstrahlung's continuum:

- more bremsstrahlung in Pb than in Cu (\propto Z²)
- BUT also better self-shielding in Pb (\propto Z⁵)
- \Rightarrow in total lower count rate at low energies

Energy m _{act}	GIOVE 1.8±0.1 kg	$\begin{array}{c} CONRAD \\ \approx 2.2 kg^* \end{array}$
[45,100] keV, cts in $d^{-1}kg^{-1}$ [100,500] keV, cts in $d^{-1}kg^{-1}$ [45,2700] keV, cts in $d^{-1}kg^{-1}$ 511 keV, cts in d^{-1}	$\begin{array}{c} 2146 \pm 13 \\ 18177 \pm 38 \\ 30952 \pm 50 \\ 1113 \pm 17 \end{array}$	$\begin{array}{c} 1162\pm8 \ *\\ 9799\pm23^{*}\\ 20407\pm33^{*}\\ 1203\pm12 \end{array}$

* detector characterization in progress, only stat. uncertainty on meas. data given

CONUS Shield with CONRAD Detector - Muon Veto Performance

detector	depth [m w.e.]	μ flux reduction	Bkg rate [45,50] keV $[kg^{-1}d^{-1}keV^{-1}]$
Gemma-I[5]	70	~ 10	2.1 ± 0.7
Texono[6]	25	~ 4	1.3 ± 0.5
GIOVE[7]	15	~2-3	0.4 ± 0.1
CONRAD	15	\sim 2-3	0.7 ± 0.1

 \Rightarrow "virtual depth" of several 100 m w.e. achieved!

(日) (同) (三) (三)

Muon-induced Background: Monte Carlo Simulation for CONRAD Detector

Energy	diff*	diff*
detector	CONRAD**	GIOVE
[45,100] keV [100,500] keV [45,2700] keV 511 keV	$\begin{array}{c} 25\pm3\%\\ 16\pm1\%\\ 15\pm1\%\\ 7\pm3\%\end{array}$	$9 \pm 8\% \\ 1 \pm 7\% \\ 2 \pm 7\% \\ 8 \pm 5\%$

* diff = (data-MC)/data

-

* uncertainty on active volume not known yet

Modeling of cosmic background

(described in JH et al., proceeding, 2015 [8])

- calculation of μ flux in lab
- MC simulation of µs through shield with MaGe [9], based on Geant4 [10],[11]
- prompt muon-induced continuum:
 - excellent agreement for GIOVE [8]

- 4 週 ト - 4 三 ト - 4 三 ト

- good agreement for CONRAD

Neutron background in CONUS

Neutron background at **reactor site** (10-45 m w.e. overburden)

- Cosmic ray background: slightly larger overburden than at MPIK
 - similar conditions expected: muon-induced neutrons in shield dominate
 - background understood and acceptable
- Neutrons from reactor:
 - measurement by Nat. Metrology Institute of Germany (PTB Braunschweig) in progress
 - MC simulation from reactor core to exp. site in progress
 - \Rightarrow first outcome: mostly thermal neutrons arrive at experimental site
 - thermal neutrons are shielded well
 - within shield: mostly muon-induced neutrons in lead

Janina Hakenmüller (MPIK Heidelberg)

Summary and Outlook

CONUS experiment

• looking for coherent elastic neutrino nucleus scattering with Ge point-contact detectors

CONUS shield

- similar to demonstrated GIOVE concept, inner layer Pb instead of Cu
- tests with CONRAD detector at MPIK (15 m w.e.):
 - design goal of $< 1 \text{ kg}^{-1} \text{d}^{-1} \text{keV}^{-1}$ in [45,50] keV achieved!
 - lower muon-induced bremsstrahlung's continuum than for GIOVE
 - active muon veto efficiency: ${\sim}99\%$
 - nearly no radioactive contaminations of shield materials
 - successful simulation of muon-induced bkg

CONUS Detectors 1-4

- 2 detectors at MPIK, 2 expected soon
- characterization of low-threshold detectors:
 - diode characteristics like active vol.
 - threshold behavior
- test of radiopurity in CONUS shield

Nuclear Power Plant in Brokdorf (GER)

- final approval expected in 3 days from now!!!
- transport and buildup of experiment, avoid contaminations

- 4 週 ト - 4 三 ト - 4 三 ト

• simulation and measurement of neutron background

A lot more to come! Start of data acquisition within 2017!

3

Bibliography

- 1 D. Barker, D.M. Mei, Astropart. Phys. 38, 1-6, 2012.
- 2 P. Huber, Phys. Rev., vol. C84, p. 024617, 2011. [Erratum: Phys. Rev.C85,029901(2012)]
- 3 N. Haag et al., Phys. Rev. Lett., vol. 112, no. 12, p. 122501, 2014.
- 4 M. Salathe, phd thesis, University of Heidelberg, 2015.
- 5 A.G. Beda et al., PPNL, vol. 7, no. 6, pp. 406-409, 2010.
- 6 H.T. Wong, Phys. Rev. D, 75, 012001, 2007.
- 7 G. Heusser et al., Eur. Phys. J. C 75 531, 2015.
- 8 J. Hakenmüller et al., J. Phys. Conf. Ser., vol 718, Dark Matter, 2016.
- 9 M. Boswell et al., IEEE Trans. Nucl. Sci. 58, 1212, 2011.
- 10 S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250, 2003.
- 11 J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270, 2006.

3

- 4 @ ▶ 4 @ ▶ 4 @ ▶