Conveners
(DPP) T2-10 Plasma Material Synthesis | Synthèse de matériaux par plasma (DPP)
- Hans Höft (Leibniz Institute for Plasma Science and Technology (INP))
Incorporation of foreign atoms in low-dimensional materials such as graphene are interesting for many applications, including biosensing, super-capacitors, and electronic device fabrication. In such processes, controlling the nature of the foreign atom incorporation is a key challenge, as different moieties can contribute differently to doping and present different reactivities. With plasma...
Tungsten-based materials are the currently favoured choice for the first-wall/Plasma Facing Components (PFC) in plasma fusion devices such as the ITER tokamak. The behaviour of tungsten-based materials under high-fluence ion bombardment is therefore highly relevant for fusion device engineering problems. The USask Plasma Immersion Ion Implantation (PIII) system has been optimized for...
The magnetic-field-dependent fluorescence properties of NV$^{-}$ center defects embedded within a diamond matrix have made them a candidate for solid state qubits for quantum computing as well as magnetic field sensing. Microwave plasma assisted chemical vapor deposition (MPCVD) of diamond with \emph{in situ} nitrogen doping has provided reproducibility and uniformity in the production of...
The vastest majority of the attempts at synthesizing novel two-dimensional (2D) materials have been relying on growth methods that work under thermodynamic equilibrium conditions, such as chemical vapor deposition, because these techniques have proven themselves successful in yielding a plethora technologically attractive, albeit thermodynamically stable, 2D materials. Out of equilibrium...