Conveners
(DQI) M1-6 Quantum System Engineering and Control | Ingénierie et contrôle des systèmes quantiques (DIQ)
- Olivia Di Matteo (TRIUMF)
We show theoretically that a modulated longitudinal cavity-qubit coupling can be used to control the path taken by a multiphoton coherent-state wavepacket conditioned on the state of a qubit, resulting in a qubit-which-path (QWP) entangled state [1]. We further show that QWP states have a better potential sensitivity for quantum-enhanced phase measurements (characterized by the quantum Fisher...
We investigate and compare a number of different strategies for rapidly estimating the values of unknown Hamiltonian parameters of a quantum system. Rapid and accurate Hamiltonian parameter estimation has applications in quantum sensing, quantum control, and quantum computing. We show that an adaptive Bayesian method based on minimizing the Shannon entropy in each shot of a measurement...
Non-Gaussian operations are essential for most bosonic quantum technologies. Yet, realizable non-Gaussian operations are rather limited in type and generally suffer from accuracy-duration tradeoffs. In this work, we propose to use quantum signal processing to engineer non-Gaussian operations. For systems dispersively coupled to an auxiliary qubit, our scheme can generate a new type of...
Atomic and solid-state spin ensembles are promising quantum technological platforms, but practical architectures are incapable of resolving individual spins. The state of an unresolvable spin ensemble must obey the condition of permutational invariance, yet no method of generating general permutationally-invariant (PI) states is known. In this work, we develop a systematic strategy to generate...