Conveners
(DAMOPC) T3-8 Integrated Optics and Quantum Technologies | Optique intégrée et technologies quantiques (DPAMPC)
- Chitra Rangan
Silicon nitride (SiN) stands out as a promising material for the fabrication and design of integrated photonic devices applicable to precision spectroscopy, telecommunications, and quantum optical communication. Notably, SiN demonstrates low losses, high nonlinearities, and compatibility with existing CMOS technology. We will report on our lab's optimized process, guiding quantum devices from...
Future quantum networks have significant implications in the secure transfer of sensitive information. A key component to enabling longer transmission distances in these networks is an efficient and reliable quantum memory (QM) device. QM devices can enable the storage of quantum optical light and will be a vital component of quantum repeater nodes and precise quantum sensors. We will present...
A robust, reliable and field-deployable quantum memory device will be necessary for long-distance quantum communication and the future quantum internet [1]. An attractive implementation to meet these requirements is a warm vapour system operating under the conditions of Electromagnetically Induced Transparency. This technique is capable of storing and receiving quantum optical light states...