Inhaled hyperpolarized (HP) 129Xe MRI is a non-invasive and radiation-risk-free lung imaging method. Simultaneous ventilation/perfusion lung measurements of functional gas exchange within the lungs are possible due to the natural solubility of xenon in lung tissue compared to other imaging gases. Therefore, 129Xe is a unique probe for exploring xenon within and beyond the lung, such as lung...
Purpose: Targeting small, breast lesions with high accuracy is critical for early stage diagnosis, treatment planning, and improving patient prognosis. Current imaging methods to target and sample breast lesions are limited in sensitivity and targeting accuracy. We propose using a breast-specific nuclear medicine imaging technique, positron emission mammography (PEM) to improve detection and...
Introduction: The non-invasive chemical exchange saturation transfer (CEST) MRI method measures pHi with high spatial and temporal resolution. In CEST, exchangeable protons on proteins can be selectively excited and detected through the transfer of magnetization to bulk water; the rate of which is pH-dependent. We have previously developed a CEST-MRI technique, amine and amide...
Solid-state nanopores can be used as single-molecule detection devices. Since the rate of passage through a nanopore is proportional to the polyeletrolyte concentration, solid-state nanopores can be used to precisely quantify dilute concentrations (nM/pM) of disease-relevant biomarkers. Accurate concentration measurements require statistically significant sample sizes of translocation events,...
Our lab has been investigating the use of laser-induced breakdown spectroscopy (LIBS) for the rapid identification of bacteria in simulated clinical specimens. LIBS is a laser-based spectrochemical technique that allows a near-instantaneous measurement of the elemental composition of a target. Subtle yet reproducible differences in the concentration of inorganic elements like phosphorous,...
Magnetic resonance imaging requires the sample to be stationary and centered in the magnetic field in order to have the best quality image. After a recent construction period, many pieces of equipment in the lab were lost. Thus we had difficulty imaging live mouse brain with their heads remaining stationary and centered in the magnet. A 3D printed radiofrequency (RF) coil holder attached to a...
Purpose
Micrometer-scale spatial resolution and sensitivity to low doses remain a challenge for radiation dosimetry, however, these are essential to advancing areas of radiation therapy and understanding health risks from low dose radiation exposures. The purpose of this work is to develop a new approach for high spatial resolution dosimetry based on Raman micro-spectroscopy scanning...
Populations of genetically identical cells exhibit significant variability even when grown in constant conditions. This cell-to-cell variability is the result of a varying intracellular milieu, as well as noise arising from probabilistic birth and death events of any molecule of interest. Because the network of molecular interactions within a cell is only sparsely characterized, it is...
Abstract
Particle neutron gamma-x detection (PNGXD) is a novel imaging concept proposed for tumor localization during proton therapy. The premise is to use secondary neutron interactions with a gadolinium contrast agent (GDCA) to produce photons within the 40–200 keV energy region that can be used for spectroscopic detection [1]. Previous work has investigated the experimental measurement...