1–4 Sept 2025
Buenos Aires
America/Argentina/Buenos_Aires timezone

Simple and direct formulae for Lambda model of ‘adot’ and ‘Hubble parameter’

Not scheduled
20m
Buenos Aires

Buenos Aires

Speaker

Satya Seshavatharam Utpala Venkata (1Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India 2Quality Assurance Dept, Casting, DIP Division, Electrosteel Castings Ltd, Srikalahasthi, AP, India.)

Description

With our corrected cosmic red shift formula and Hubble-Hawking model of cosmology, we have developed direct relations for fitting the adot and Hubble parameter. Hubble-Hawking model of current Hubble parameter can be expressed as, $\left ( H_{0} \right )_{HH} \cong 2.92 \times 10^{-19} \left ( 2.725 \right )^2\cong 66.9 \textrm{ km/sec/Mpc}$. If $z_{new}\cong \frac{E_{emitted}-E_{Observed}}{E_{emitted}}\cong \frac{\lambda_{Observed}-\lambda_{emitted.}} {\lambda_{Observed}}\cong \frac{z}{z+1}$ and $1+z \cong \frac{1}{1-z_{new}}$, Lambda model of $\left ( a_{dot} \right )_z \cong \left [ \frac{\sqrt{exp\left ( 0.5\left ( z_{new}+sinh\left ( z_{new} \right ) \right ) \right )\left ( 1+z \right )}}{1+2 z_{new}} \right ]\left ( H_0 \right )_\Lambda$. Thus Lambda model of Hubble parameter (HP) can be expressed as, $\left ( H_z \right )_\Lambda \cong \frac{\left ( a_{dot} \right )_z}{a}\cong \left ( 1+z \right )\left ( a_{dot} \right )_z\cong \left[ \frac{\sqrt{exp\left ( 0.5\left ( z_{new}+sinh\left ( z_{new} \right ) \right ) \right )}}{1+2 z_{new}} \right ]\left ( 1+z \right )^{\frac{3}{2}} \left ( H_0 \right )_\Lambda$. For example, if z=1100, obtained $\left ( a_{dot}\right )_{1100}\cong 1274.6\text{ km/sec/Mpc}$ and $\left ( H_{1100}\right )\cong \begin{matrix} 1403355.27 \end{matrix}\text{ km/sec/Mpc}$. Corresponding Lambda model values are, $\left ( a_{dot}\right )_{1100}\cong 1272.2\text{\:km/sec/Mpc}$ and $\left ( H_{1100}\right )\cong 1400680.00\text{\:km/sec/Mpc}$. See our two page PDF submitted by email for Table 1, Fig. 1 and https://cosmocalc.icrar.org/. With reference to our Hubble-Hawking model, $\left ( \frac{H_z}{H_0} \right )_{HH} \cong \frac{T_z^2}{T_0^2} \cong \left ( 1+z \right )^2$. Hence, $\frac{\left ( H_z \right )_\Lambda }{\left ( H_{z} \right )_{HH}}\cong \left[ \frac{\sqrt{\left ( 1-z_{new} \right )exp\left(0.5\left ( z_{new}+sinh\left( z_{new} \right ) \right ) \right )}}{1+2z_{new}}\right]$. One very interesting observation is that, Lambda model of cosmic age up to recombination can be expressed as, $\left ( t_z \right )_ \Lambda \cong \frac{\sqrt{1+z}}{\left ( H_{z} \right )_{HH}}\cong \left [ \left ( \left ( 1+z \right )^\frac{3}{2} \right )\left ( H_0 \right )_\Lambda \right]^{-1}$. Thus, $\left ( t_z H_z \right )_\Lambda \cong \left[ \frac{\sqrt{exp\left ( 0.5\left ( z_{new}+sinh\left ( z_{new} \right ) \right ) \right )}}{1+2 z_{new}} \right ] $. With further study and by considering the corrected cosmic red shift formula, true nature of cosmic expansion rate can be understood. It needs an unbiased review.

Author

Satya Seshavatharam Utpala Venkata (1Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India 2Quality Assurance Dept, Casting, DIP Division, Electrosteel Castings Ltd, Srikalahasthi, AP, India.)

Co-author

Prof. Lakshminarayana S (Dept. of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India)

Presentation materials

There are no materials yet.