Speaker
Description
The frequency widening of pulsar profiles is commonly attributed to lower frequencies being produced at greater heights above the surface of the pulsar; so-called radius-to-frequency mapping. Our understanding of the structures of pulsar radio beams is limited by the fact that we can only observe that emission which points along our line of sight. However, single pulses give us a population of instances where we can trace this frequency evolution along field lines in the magnetosphere, allowing us to build up a description of the shape of the active emission region. Assuming that emission is produced tangential to the magnetic field lines and that each emission frequency corresponds to a single height, we simulate the single pulse profile evolution resulting from the canonical conal beam model and a fan beam model, and compare the results of these simulations with single pulses of PSR J1136+1551, observed with the Giant Metrewave Radio Telescope.