Speaker
Description
The development of low-threshold detectors for the study of coherent elastic neutrino-nucleus scattering and for the search for light dark matter necessitates methods of low-energy calibration. We suggest this can be provided by the nuclear recoils resulting from the gamma emission following thermal neutron capture [1]. In particular, several MeV-scale single-gamma transitions induce well-defined nuclear recoil peaks in the 100 eV range. Using the FIFRELIN code [2], complete schemes of gamma-cascades for various isotopes can be predicted with high accuracy to determine the continuous background of nuclear recoils below the calibration peaks. We present a comprehensive experimental concept for the calibration of CaWO4 [3] and Ge cryogenic detectors at a research reactor. For CaWO4 the simulations show that two nuclear recoil peaks at 112.5 eV and 160.3 eV should be visible above background simply in the spectrum of the cryogenic detector. Then we discuss how the additional tagging for the associated gamma increases the sensitivity of the method and extends its application to a wider energy range and to Ge cryogenic detectors.
[1] L. Thulliez, D. Lhuillier et al., Calibration of nuclear recoils at the 100 eV scale using neutron capture, Journal of Instrumentation, 16, 7 (2021)
[2] O. Litaize et al., Fission modelling with FIFRELIN, European Physical Journal A, 51, 12 (2015)
[3] G. Angloher et al. Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground: CRESST Collaboration, European Physical Journal C, 77:637, 9 2017