12–16 Dec 2022
IISER Mohali
Asia/Kolkata timezone

Probing neutrino mass ordering with supernova neutrinos

15 Dec 2022, 14:00
1h
IISER Mohali

IISER Mohali

Lecture Hall Complex, IISER Mohali, Sector 81, Knowledge city, SAS Nagar, Punjab, India
Poster Poster - 3

Speaker

Abinash Medhi (Tezpur University, Assam, India)

Description

A core-collapse supernova explosion releases 99\% of the progenitor star's gravitational energy in the form of neutrinos resulting in emission of a huge number of MeV neutrinos ($\sim \mathcal{O}(10^{56})$). This neutrino emission takes place in three different phases, namely the {\it neutronisation burst, accretion and cooling} pertaining to different physical processes. Interestingly, neutrinos from neutronisation burst and accretion phases carry unique signatures of neutrino masses and mixing. For the electron antineutrino detectors, the faster rise of heavy lepton flavour antineutrinos at the SN core can result in different temporal signal characteristics for different mixing scenarios. Similarly, the absence of all other flavours but the electron neutrinos makes the neutronization burst phase sensitive to the mixing scenarios and can help us to resolve the long-standing problem of neutrino mass ordering, i.e., normal mass ordering (NMO) and inverted mass ordering (IMO). In this work, we investigate the possibilities of determining the neutrino mass ordering with Hyper-Kamiokande (HK), JUNO (for accretion phase) and DUNE (for neutronisation burst phase) for different SN models at galactic distances ($\sim$ 10 kpc). All these detectors are found to be capable of distinguishing the two scenarios, NMO and IMO at great statistical significance for most of the SN models.

References:
[1] P. D. Serpico, S. Chakraborty, T. Fischer, L. Hudepohl, H.-T. Janka and A. Mirizzi, Probing the neutrino mass hierarchy with the rise time of a supernova burst, Phys. Rev. D 85 (2012) 085031 [1111.4483].
[2] Hyper-Kamiokande collaboration, Hyper-Kamiokande Design Report, 1805.04163.
[3] JUNO collaboration, Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [1507.05613].
[4] DUNE collaboration, Long-baseline neutrino oscillation physics potential of the DUNE experiment, Eur. Phys. J. C 80 (2020) 978 [2006.16043].
[5] R. Buras, H.-T. Janka, M. Rampp and K. Kifonidis, Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. 2. models for different progenitor stars, Astron. Astrophys. 457 (2006) 281 [astro-ph/0512189].
[6] K. Nakazato, K. Sumiyoshi, H. Suzuki, T. Totani, H. Umeda and S. Yamada, Supernova Neutrino Light Curves and Spectra for Various Progenitor Stars: From Core Collapse to Proto-neutron Star Cooling, Astrophys. J. Suppl. 205 (2013) 2 [1210.6841].

Session Neutrino Physics

Author

Abinash Medhi (Tezpur University, Assam, India)

Co-authors

Mr Prantik Sarmah (Indian Institute of Technology Guwahati) Debanjan Bose (S N Bose National Centre for Basic Sciences, Kolkata, India) Sovan Chakraborty (Indian Institute of Technology Guwahati) Dr Moon Moon Devi (Tezpur University, India)

Presentation materials

There are no materials yet.