13–17 May 2024
University of Pittsburgh / Carnegie Mellon University
US/Eastern timezone

An alternative form of supersymmetry with reduced cross-sections and modified experimental signatures

13 May 2024, 17:15
15m
David Lawrence Hall 106 (University of Pittsburgh)

David Lawrence Hall 106

University of Pittsburgh

Speaker

Roland Allen

Description

As in arXiv:2307.04255, we consider a radically modified form of supersymmetry (called susy here to avoid confusion), which initially combines standard Weyl fermion fields and primitive (unphysical) boson fields. A stable vacuum then requires that the initial boson fields, whose excitations would have negative energy, be transformed into three kinds of scalar-boson fields: the usual complex fields $\phi$, auxiliary fields $F$, and real fields $\varphi$ of a new kind (with degrees of freedom and gauge invariance preserved under the transformation). The requirement of a stable vacuum thus imposes Lorentz invariance, and also immediately breaks the initial susy -- whereas the breaking of conventional SUSY has long been a formidable difficulty. Even more importantly, for future experimental success, the present formulation may explain why no superpartners have yet been identified: Embedded in an $SO(10)$ grand-unified description, most of the conventional processes for production, decay, and detection of sfermions are excluded, and the same is true for many processes involving gauginos and higgsinos. This implies that superpartners with masses $\sim 1$ TeV may exist, but with reduced cross-sections and modified experimental signatures. For example, a top squark (as redefined here) will not decay at all, but can radiate pairs of gauge bosons and will also leave straight tracks through second-order (electromagnetic, weak, strong, and Higgs) interactions with detectors. The predictions of the present theory include (1) the dark matter candidate of our previous papers, (2) many new fermions with masses not far above 1 TeV, and (3) the full range of superpartners with a modified phenomenology.

Author

Presentation materials