Speaker
Description
We present a novel perspective on the role of inflation in the production of Dark Matter (DM). Specifically, we explore the DM production during Warm Inflation via ultraviolet Freeze-In (WIFI). We demonstrate that in a Warm Inflation (WI) setting the persistent thermal bath, sustained by the dissipative interactions with the inflaton field, can source a sizable DM abundance via the non-renormalizable interactions that connect the DM with the bath. Compared to the (conventional) radiation-dominated (RD) UV freeze-in scenario for the same reheat temperature (after inflation), the resulting DM yield in WIFI is always enhanced, showing a strongly positive dependence on the mass dimension of the non-renormalizable operator. Of particular interest, for a sufficiently large mass dimension of the operator, the entirety of the DM abundance of the Universe can be created during the inflationary phase.