Conveners
BSM IV
- Ian Lewis (The University of Kansas)
Fundamental spinless particles are theoretically common yet experimentally rare. This talk presents an overview of my recent phenomenology program probing enigmatic spin 0 dynamics sensitive to new physics. The Higgs self-coupling may remarkably become directly accessible soon but LHC challenges demand continued innovation. Meanwhile, scalar leptons elegantly reconcile the muon g–2 tension and...
In this talk we will discuss a recent study of a low-mass vector dark matter
candidate, $W'$, accompanied by a dark photon and dark $Z'$ in the context of a
simplified gauged two-Higgs-doublet model. The parameter space of the model
(allowed by experimental and theoretical constraints) indicates that a dark $Z'$
can be important for dark matter annihilation while a dark photon is...
Dark gauge bosons including dark photon and $Z'$ have been important players in beyond-the-Standard-Model phenomenology including their potential connection to dark matter. However, their feeble interactions with the Standard Model (SM) particles motivate the use of high-intensity beam-based experiments including neutrino experiments. If neutrinos are non-trivially charged under such dark...
We study the potential of future Parity-Violating Electron Scattering (PVES) data to probe the parameter space of the Standard Model Effective Field Theory (SMEFT). We contrast the constraints derived from Drell-Yan data taken at the Large Hadron Collider (LHC) with projections of the planned PVES experiments SoLID and P2. We show that the PVES data can complement the bounds set by the LHC...
In this talk, I will present the theoretical framework to probe dark sectors that have portal interactions with the standard model, mediated by irrelevant operators. The focus is to develop a model-independent approach, without any specific model biases. I will focus on dark sectors with approximate conformal dynamics, and elucidate how this allows model-independent bounds to be derived. I...
Collider searches for electroweak final states from decays involving narrow mass gaps in a new physics sector are kinematically limited by softness of the scattering products. In a prior study, we required a hard initial state jet in order to boost the visible system, and exploited variations in angular separations to suppress topologically identical backgrounds from WW+jets. Presently, we...
Many scenarios of physics beyond the Standard Model predict new particles with masses well below the electroweak scale. Low-energy, high luminosity colliders such as BABAR are ideally suited to discoverthese particles. We present several recent searches for low-mass dark sector particles at BABAR, including leptophilic scalars, self-interacting dark matter, and axion like particles produced in...