Single photon sensitivity and photon number resolving capability are enabling features in research and technology development. Quantum information & computing as well as metrology, meteorology, biology, medical physics and security against cyber attacks and nuclear threats are expected to undergo a revolution once low light detection is made easy, reliable and low cost. Single photon detection...
Detectors in the field of Nuclear Security are generally of the larger static format, however, complementary measurements provided by more portable and compact systems are often essential. Similarly, in environmental radiation situations it is necessary to quickly determine the location of an unknown source, and of particular interest is the ability to discriminate between neutron and gamma...
We describe the fabrication and performance of large area glass micro-well detectors (g-MWD) fabricated using APEX® Glass. These microstructure, two-dimensional proportional counters are 85x85 mm^2 square with an array of 100 um diameter wells, 100 um deep, on 200 um centers with crossed anode and cathode electrodes. Their performance in P-10 at 1 atm shows excellent gas gain and stability. ...
Canberra BEGe and SAGe Well are high-purity germanium detectors designed for gamma-ray spectroscopy featuring small p+ readout electrodes which provide reduced electronic noise and allow for unrivalled energy resolution, particularly at low gamma-ray energy. A series of characterisation studies has been carried out on a number of detectors at the University of Liverpool to investigate the use...
High resolution imaging of fast neutrons (>0.5 MeV) combined with energy spectroscopy is employed in variety of applications.
We have previously reported on the development and construction of a detector based on a micro-capillary bundle filled with organic liquid scintillator. The scintillation is observed by a CCD camera that will permit high resolution imaging and spectrometry by...