Black hole evaporation is perhaps the most commonly studied way for a black hole to end. However there is another way that is both entirely classical and whose consequences have been observed hundreds of times by LIGO/VIRGO. One can sensibly understand black hole mergers as representing the formation of a new black hole followed by the destruction of the two original ones. The destruction...
I will present a study on the quantum gravitational collapse of spherically symmetric pressureless dust. Using an effective equation derived from a polymer quantization in the connection-triad phase space variables of general relativity, numerics show, for a variety of initial dust configurations, that (i) trapped surfaces form and disappear as an initially collapsing density profile evolves...
Developing a Theory of Everything has been a long-standing, yet elusive goal. Even so, approaches exist that may be able to remedy this. In this presentation, we will explore one such approach: The Newton-Schrödinger System. Presented here will be numerical analysis on how such a system behaves in the domain of a circle with various Gaussian initial conditions, as well as the motion of test...