Speaker
Description
An intriguing connection was noticed recently by Kitaev between a simple model of Majorana fermions with random infinite range interactions – the Sachdev-Ye-Kitaev (SYK) model – and the horizons of extremal black holes in two-dimensional anti-de Sitter (AdS2) space. This connection furnishes a rare example of holographic duality between a solvable quantum-mechanical model and Einstein gravity. In this talk I will review some of these developments and describe a proposed physical realization of the SYK model in a solid state system. The system employs the Fu-Kane superconductor realized at the interface between a three dimensional topological insulator (TI) and an ordinary superconductor.
The requisite Majorana fermions are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux.
Under the right conditions the Majorana zero modes are described by the SYK Hamiltonian. Extensive numerical simulations demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and suggest ways in which these can be observed experimentally.