Skip to main content
28 May 2017 to 2 June 2017
Queen's University
America/Toronto timezone
Welcome to the 2017 CAP Congress! / Bienvenue au congrès de l'ACP 2017!

POS-28 - A “two-peak” pattern observed in the high-frequency neural oscillations of a weakly electric fish

31 May 2017, 18:02
2m
Queen's Athletics & Recreation Centre (ARC)

Queen's Athletics & Recreation Centre (ARC)

Poster (Student, In Competition) / Affiche (Étudiant(e), inscrit à la compétition) Physics in Medicine and Biology / Physique en médecine et en biologie (DPMB-DPMB) DPMB Poster Session | Session d'affiches DPMB (6)

Speaker

Ms Amina Berrada (University of Ottawa)

Description

Weakly electric fish produce a high-frequency oscillating electric field that allows them to navigate and communicate in the dark. Their clock-like signal is the least variable of any known biological oscillator, but the mechanisms underlying this extreme precision are not clear. We recorded electric discharges in Apteronotus albifrons (blackghost knifefish) at 50MHz sampling frequency to characterize temporal precision under different conditions, such as a varying temperature. We used three different approaches to analyse cycle-to-cycle variability: the first involved a simple signal threshold; the second was based on the signal envelope using Hilbert transforms; and the third, which was the most accurate, used the phase of the Hilbert transform. One important observation was that under certain conditions, the histogram of cycle periods exhibits two peaks. We hypothesize that the electric organs on the left and right sides of the fish are independent oscillators that normally are synchronized but can also operate separately under some conditions. We will discuss the implications of our results on the neural generation of high-frequency signals and the insight that it provides for brain oscillations in general.

Authors

Ms Amina Berrada (University of Ottawa) Ms Courtney Tower (University of Ottawa ) Dr John Lewis (University of Ottawa, Department of Biology ) Dr Béla Joós (University of Ottawa )

Presentation materials