28 May 2017 to 2 June 2017
Queen's University
America/Toronto timezone
Welcome to the 2017 CAP Congress! / Bienvenue au congrès de l'ACP 2017!

3D digital SiPM for nEXO

31 May 2017, 09:00
15m
Botterell B147 (Queen's University)

Botterell B147

Queen's University

CLOSED - Oral (Student, In Competition) / Orale (Étudiant(e), inscrit à la compétition) Nuclear Physics / Physique nucléaire (DNP-DPN) W1-5 Neutrinoless Double Beta Decay (DNP/PPD/DTP) | Double désintégration bêta sans neutrino (DPN/PPD/DPT)

Speaker

Frédéric Vachon (Université de Sherbrooke)

Description

The Enriched Xenon Observatory (EXO) is a particle physics experiment searching for neutrinoless double-beta decay in xenon-136 with a 200-kg time projection chamber. Efforts are currently being made to enhance the experiment’s sensitivity with the development of a 5 tonne-scale detector, the next Enriched Xenon Observatory (nEXO). Major experimental improvements include the use of low noise silicon photomultipliers (SiPM) for the detection of liquid Xenon scintillation light. While the baseline of the experiment is to use SiPM, the Sherbrooke’s radiation instrumentation team is proposing a vertically integrated and digitally controlled SiPM that is expected to achieve excellent performances with minimum power dissipation, a critical element to avoid the formation of bubbles in liquid Xenon. Using a digital readout takes advantage of the inherently binary nature of the device, provides fast in-chip processing and significantly lowers the output capacitance of the detector. Moreover, by having the readout electronics under the SiPM, both tiers can be optimally and independently fabricated; a very dense CMOS bottom tier and a dedicated custom SiPM top tier with an improved photosensitive fill factor. This talk presents Sherbrooke’s first functional 3D digital SiPM. The motivation of this work was to establish a proof of concept and consequently did not aim at ultimate performance. The work done shows that 3D integration of SPAD arrays on standard CMOS electronics is not significantly affecting the Single Photon Avalanche Diode array performances. Work is underway to develop a 3D integration process with industrial partners to be able to produce the required 4-5 m2 of detectors and to improve sensitivity at 170-180 nm.

Author

Frédéric Vachon (Université de Sherbrooke)

Co-authors

Samuel Parent (Université de Sherbrooke) Xavier Bernard (Université de Sherbrooke) Vincent-Phillippe Rhéaume (Université de Sherbrooke) Benoit-Louis Bérubé (Université de Sherbrooke) Maxime Côté (Université de Sherbrooke) Jacob Deschamps (Université de Sherbrooke) Frederic Nolet (Université de Sherbrooke) Tommy Rossignol (Université de Sherbrooke) Frédéric Bourque (Université de Sherbrooke) Luc Maurais (Université de Sherbrooke) Frédéric Dubois (Université de Sherbrooke) Thomas Dequivre (Université de Sherbrooke) Audrey Corbeil Therrien (Université de Sherbrooke) Caroline Paulin (Université de Sherbrooke) Stéphane Martel Henri Dautet (Université de Sherbrooke) Rejean Fontaine Fabrice Retiere (TRIUMF) Prof. Serge Charlebois (Université de Sherbrooke) Jean-Francois Pratte

Presentation materials