12–17 Jun 2016
University of Ottawa
America/Toronto timezone
Welcome to the 2016 CAP Congress! / Bienvenue au congrès de l'ACP 2016!

Pseudospin representation of the two-site Anderson-Hubbard model

16 Jun 2016, 09:00
15m
SITE G0103 (University of Ottawa)

SITE G0103

University of Ottawa

SITE Building, 800 King Edward Ave, Ottawa, ON
Oral (Non-Student) / orale (non-étudiant) Condensed Matter and Materials Physics / Physique de la matière condensée et matériaux (DCMMP-DPMCM) R1-2 Strongly Correlated Systems (DCMMP) / Systèmes fortement corrélés (DPMCM)

Speaker

Rachel Wortis (Trent University)

Description

The state of an Anderson localized system can be described in terms of the occupation of a set of single-particle wave functions which are localized in space. When interactions are added, single-particle wave functions are no longer well defined, so what is a useful description of the state of a many-body localized system and what about it is localized? Given that any system with Hilbert-space dimension 2$^N$ may be described by an Ising-type Hamiltonian, it has been proposed that in a fully many-body localized system the Ising pseudospins in this representation may be chosen to be local. Actually constructing these spins is non-trivial. While a number of approaches have been proposed, few explicit examples exist and almost all work has been on spin systems. Here we present the Hamiltonian of a two-site Hubbard model with disorder and nearest-neighbor interactions written in terms of pseudospins, and we explore the form of these pseudospins and their evolution as a function of hopping amplitude.

Author

Rachel Wortis (Trent University)

Co-author

Malcolm Kennett (Simon Fraser University)

Presentation materials