12–17 Jun 2016
University of Ottawa
America/Toronto timezone
Welcome to the 2016 CAP Congress! / Bienvenue au congrès de l'ACP 2016!

Entangled photon pair source towards quantum spectroscopy

14 Jun 2016, 19:12
2m
SITE Atrium (University of Ottawa)

SITE Atrium

University of Ottawa

Poster (Student, In Competition) / Affiche (Étudiant(e), inscrit à la compétition) Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC) DAMOPC Poster Session with beer / Session d'affiches avec bière DPAMPC

Speaker

Mrs Aimee Gunther (Institute for Quantum Computing, University of Waterloo)

Description

In nonlinear spectroscopy, measuring weak nonlinear signals generated from feeble signal and probe fields in a nonlinear material can be quite difficult, especially with photosensitive materials. The field of quantum spectroscopy has long theorised applications of photon pairs from Spontaneous Parametric Down-Conversion sources for enhancing two-photon nonlinear spectroscopy through the utilization of quantum properties. Using the high frequency correlations between photons in a pair as well as the tight pair creation times, it has been shown that two-photon frequency conversion processes such as two-photon absorption and sum-frequency generation are linear in input flux rather than quadratic, as with classical laser light. Building off of the established experimental foundation of entangled two-photon absorption and entangled photon pair up-conversion, I present a source of entangled photon pairs based off of periodically-poled magnesium oxide-doped lithium niobate capable of single-photon-level frequency conversion. This source is optimized for high photon fluxes and low chromatic dispersion which can be verified through sum-frequency generation in an identical, second crystal. This is a first step towards demonstrating time-domain quantum spectroscopy in biological media.

Author

Mrs Aimee Gunther (Institute for Quantum Computing, University of Waterloo)

Co-author

Dr Thomas Jennewein (Institute for Quantum Computing, University of Waterloo)

Presentation materials

There are no materials yet.