Conveners
T1-10 THz science and applications (DAMOPC) / Sciences et applications des THz (DPAMPC)
- Matt Reid (University of northern british columbia)
David Cooke
(McGill University)
6/16/15, 8:45 AM
Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC)
Invited Speaker / Conférencier invité
In this talk we discuss recent experiments using ultra-broadband time-resolved THz spectroscopy (uTRTS) studying charge and excitonic degrees of freedom in the novel photovoltaic material CH3NH3PbI3. This technique uses near single-cycle and phase stable bursts of light with an ultra-broad bandwidth spanning 1 - 125 meV to take snapshots of a material's dielectric function or optical...
Prof.
Denis Morris
(Département de physique, Université de Sherbrooke)
6/16/15, 9:15 AM
Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC)
Invited Speaker / Conférencier invité
The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, InP and Si nanowires grown by molecular beam epitaxy or by chemical vapor deposition on silicon substrates were characterized using optical-pump terahertz probe (OPTP) transmission experiments. The...
Mr
Pascal Lefebvre
(University of Calgary)
6/16/15, 9:45 AM
Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC)
Oral (Student, In Competition) / Orale (Étudiant(e), inscrit à la compétition)
Quantum communication is based on the possibility of transferring quantum states, generally encoded into so-called qubits, over long distances. Typically, qubits are realized using polarization or temporal modes of photons, which are sent through optical fibers. However, photons are subject to loss as they travel through optical fibers or free space, which sets a distance barrier of around 100...
Caleb John
(University of Calgary)
6/16/15, 10:00 AM
Division of Atomic, Molecular and Optical Physics, Canada / Division de la physique atomique, moléculaire et photonique, Canada (DAMOPC-DPAMPC)
Oral (Student, Not in Competition) / Orale (Étudiant(e), pas dans la compétition)
Reliable true random number generation is essential for information theoretic security in a quantum cryptographic system based on quantum key distribution (QKD) and one-time pad encryption [1]. Various random number generation methods have already been proposed and demonstrated, such as schemes based on the detection of single photons [2], whose rate is limited by the dead time of single...