13–19 Jun 2015
University of Alberta
America/Edmonton timezone
Welcome to the 2015 CAP Congress! / Bienvenue au congrès de l'ACP 2015!

Adaptive Matrix Transpose Algorithms for Distributed Multicore Processors

16 Jun 2015, 16:45
15m
CCIS L2-190 (University of Alberta)

CCIS L2-190

University of Alberta

Oral (Non-Student) / orale (non-étudiant) Plasma Physics / Physique des plasmas (DPP) T3-10 Special session to honour Dr. Akira Hirose II (DPP) / Session spéciale en l'honneur du Dr Akira Hirose II (DPP)

Speaker

John Bowman (University of Alberta)

Description

The matrix transpose is an essential primitive of high-performance parallel computing. In plasma physics and fluid dynamics, a matrix transpose is used to localize the computation of the multidimensional Fast Fourier transform, the engine that powers the pseudospectral collocation method. An adaptive parallel matrix transpose algorithm optimized for distributed multicore architectures running in a hybrid OpenMP/MPI configuration is presented. Significant boosts in speed are observed relative to the distributed transpose used in the state-of-the-art adaptive FFTW library. In some cases, a hybrid configuration allows one to reduce communication costs by reducing the number of MPI nodes, and thereby increasing message sizes. This also allows for a more slab-like than pencil-like domain decomposition for multidimensional Fast Fourier Transforms, reducing the cost of, or even eliminating the need for, a second distributed transpose. Nonblocking all-to-all transfers enable user computation and communication to be overlapped. We apply adaptive matrix transposition algorithms on hybrid architectures to the parallelization of implicitly dealiased pseudospectral convolutions used to simulate turbulent flow. Implicit dealiasing outperforms conventional zero padding by decoupling the data and temporary work arrays. Parallelized versions of our implicit dealiasing algorithms for hybrid architectures are publically available in the open-source library FFTW++.

Author

John Bowman (University of Alberta)

Co-author

Malcolm Roberts (University of Strasbourg)

Presentation materials

There are no materials yet.