A dose monitoring system is crucial for protecting workers from overexposure to neutrons and gamma rays in the neutron utilization facilities and decommissioning of nuclear power plants. Traditional passive dosimeters have been widely used to measure both radiation types simultaneously. However, these dosimeters are incapable of real-time dose estimation and detecting hotspot locations. A...
As an advanced detection spectrometer with the most advanced design concept, neutron sources are an important platform for conducting cutting-edge disciplines and research on high-tech. In recent years, its performance and technology have made rapid development. With the evolution of upgrades, the traditional file-based data transmission framework is under great pressure in the face of...
We presents the findings of a study investigating the impact of single and multiple trenches employed as isolation structures in Trench Low-Gain Avalanche Detectors (TI-LGADs). The focus of this study is to analyze the collection of charge induced by fs-laser at various shooting points along the X-axis and compare the deduced X-profiles derived from the recorded waveform data.
The results...
Hydrogenated amorphous silicon (a-Si:H) is a material with an excellent radiation hardness and with the possibility of deposition on flexible substrates like Polyimide (PI). Exploiting these properties, the HASPIDE (Hydrogenated Amorphous Silicon PIxels DEtectors) project has the goal of developing a-Si:H detectors on flexible substrates for beam dosimetry and profile monitoring, neutron...
High Voltage-CMOS (HV-CMOS) sensors are gaining steam as a capable, radiation tolerant, and cost effective solution for silicon based detectors in current and future experiments. These devices can be biased to high voltage, for radiation tolerance, and due to their monolithic nature they can also meet a low material budget. Additionally, they do not require external processing, such as...
Pixelated silicon sensors are the most precise detector for charged particle tracking currently in use at high-energy physics experiments. Located closely to the interaction point, they are required to function in a radiation harsh environment. It is hence necessary for such sensors to demonstrate an increased radiation tolerance as well as to maintain a good performance in high beam...
In the rapidly evolving field of semiconductor detector device design and performance prediction, computer-aided simulations play a crucial role. Various research institutions worldwide have developed simulation software and packages for semiconductor detectors, such as WeightField2, AllpixSquared, and TRACS, to address different software development requirements and computational performance...
We present a design project for a muon tomography detector aiming to the monitoring of glacier thickness. The glacier melting process is not completely understood and is considered a hot topic in view of the global warming.
Muon Tomography is a widely used technique, employed to perform imaging of the inner structure of large objects, as volcanoes, container, and pyramids. This technique...
High-Speed Data Transmission and Serial Powering IP’s in 65nm CMOS Image Sensor Process at the Electron Ion Collider
Soniya Mathew(1), Iain Sedgwick(1), Nicola Guerrini(1), Marcello Borri(1), Andrew Hill(1), William Helsby(1), Laura Gonella(2), James Glover(2)
1 Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX, United Kingdom
2 School...
The position resolution of the novel p-type Segmented Inverted-Coaxial Germanium (SIGMA) detector was investigated using the Pulse Shape Analysis (PSA) technique. The design of this large volume HPGe detector is based on a coaxial geometry and combines the small point contact technology along with the segmentation of the outer contact. The location of the γ-ray interaction points is determined...
Silicon strip detectors play a central role in applied nuclear physics thanks to the high channel density and almost 100% detection efficiency. In particular, double-sided silicon strip detector (DSSSD) enable very accurate 2D position sensing. Their principle of operation is straightforward, but the full exploitation of their potential requires many independent readout channels
In this work...
Photon counting detectors are utilised in applications in medical imaging, nuclear and particle physics where a strong magnetic field is present, requiring a detector that can operate in these circumstances. An extremely important characteristic of photon counting detectors is the method of electron multiplication used. In vacuum tubes such as photomultiplier tubes (PMTs) and microchannel...
The majority of neutron spectrometers designated for use in the China Spallation Neutron Source (CSNS) rely on position-sensitive detectors that utilize Helium-3 tube technology. To minimize the impact of air on neutron scattering experiments, these detectors must be located inside a vacuum chamber. For these types of spectrometers, it is also advisable to house the readout electronics within...
For 4th generation synchrotron radiation (SR) light sources, the X-ray beam-position stability is one of the crucial factors in cutting-edge experiments. Instead of traditional passive vibration isolation techniques, active vibration isolation measures based on feedback control technology have begun to play an important role for stabilizing the beam-position. The readout electronics of the...
We developed a phoswich imaging detector that can simultaneously but independently acquire images of neutrons and gamma photons. The developed neutron imaging system consists of a lithium-containing silver doped zinc sulfide (Li-ZnS(Ag)) plate stacked on a cerium doped yttrium aluminum perovskite (YAP(Ce)) plate to form a phoswich detector, which is optically coupled to a position sensitive...