Conveners
Closing session
- Daniela Bortoletto (University of Oxford (GB))
The FASER experiment at the LHC will be instrumented with a high precision W-Si preshower to identify and reconstruct electromagnetic showers produced by two O(TeV) photons at distances down to 200µm. The new detector features a monolithic silicon ASIC with hexagonal pixels of 100 µm pitch, extended dynamic range for the charge measurement and capability to store the charge information for...
Silicon tracking detectors are by now the standard for the inner tracking layers of most collider physics experiments. A promising technology for future silicon particle detectors is CMOS sensor. One issue with CMOS sensors is the limited size of the reticules around 4cm$^2$ used, which is adapted to the typical ASIC sizes in industrial applications but far too small for the 100cm$^2$ sensors...
The performance of monolithic CMOS pixel sensors depends on their fabrication process and especially the feature size which directly drives the pixel size. A consortium led by the CERN EP R&D program, the ALICE experiment and various European projects (AIDAinnova, EURIZON) is investigating the benefits of a 65 nm CMOS imager process to design a new generation of pixel sensors. These...
The proposed Circular Electron Positron Collider (CEPC) presents new challenges for the vertex detector in terms of material budget, spatial resolution, readout speed, and power consumption. To address these challenges, a Monolithic Active Pixel Sensor (MAPS) prototype called TaichuPix has been implemented, which is based on a column drain readout architecture. The TaichuPix sensor chip has...
AC-coupled Low- Gain Avalanche Detectors (AC-LGAD) are designed as detectors with 100% fill factor for high precision 4D-tracking, which have been studied and researched by many institutes including BNL、FBK et al. Institute of High Energy Physics (IHEP) has also done many researches on AC-LGAD. First IHEP AC-LGAD sensors with a pitch of 2000 µm and AC pad of 1000 µ show time resolution better...
The LUXE experiment aims at studying high-field QED in electron-laser and photon-laser interactions, with the 16.5 GeV electron beam of the European XFEL and a laser beam with power of up to 350 TW. The experiment will measure the spectra of electrons, positrons and photons in expected ranges of 10−3 to 109 per 1 Hz bunch crossing, depending on the laser power and focus. These measurements...