Conveners
Detectors for High radiation and extreme environment
- David Smith (Brunel University London)
The proven radiation hardness of silicon 3D devices up to fluences of $1 \times 10^{17}\;n_{eq}/cm^{2}$ makes them an excellent choice for next generation trackers, providing $<10\;\mu m$ position resolution at a high multiplicity environment. The anticipated pile-up increase at HL-LHC conditions and beyond, requires the addition of < 50 ps per hit timing information to successfully resolve...
As nuclear and particle physics facilities move to higher intensities, the detectors used there must be more radiation tolerant. Diamond is in use at many facilities due to its inherent radiation tolerance and ease of use. We will present radiation tolerance measurements of the highest quality poly-crystalline Chemical Vapor Deposition (pCVD) diamond material for irradiations from a range of...
Signal reduction is the most important radiation damage effect on performance
of silicon tracking detectors in ATLAS. Adjusting sensor bias voltage and
detection threshold can help in mitigating the effects but it
is important to have simulated data that reproduce the evolution of
performance with the accumulation of luminosity, hence fluence.
ATLAS collaboration developed and implemented...
The European Organization for Nuclear Research (CERN) is planing a major update of the accelerator to HL-LHC and future hadron collider. These major upgrades give higher radiation doses to detectors, and degradation of semiconductor properties will be more serious problem. $\rm Cu(In_{x},Ga_{1-x})Se_2$ (CIGS) is attracting attention a new semiconductor material that can be used for long-term...