Conveners
Position Sensitive Fast Timing Detectors
- Daniel Hynds (University of Oxford (GB))
The increase of the particle flux (pile-up) at the HL-LHC with instantaneous luminosities up to L ≃ 7.5 × 1034 cm−2s−1 will have a severe impact on the ATLAS detector reconstruction and trigger performance. The end-cap and forward region where the liquid Argon calorimeter has coarser granularity and the inner tracker has poorer momentum resolution will be particularly affected. A High...
The High Granularity Timing Detector (HGTD) is designed for the mitigation of pile-up effects in the ATLAS forward region and for bunch per bunch luminosity measurements. HGTD, based on Low Gain Avalanche Detector (LGAD) technology and covering the pseudorapidity region between 2.4 and 4.0, will provide high precision timing information to distinguish between collisions occurring close in...
We present an in-depth investigation of the inter-pad (IP) gap region in the Ultra Fast Silicon Detector (UFSD) Type 10, utilizing a femtosecond laser beam and the transient current technique (TCT) as probing instruments. The sensor, fabricated in the TI-LGAD RD50 production batch at FBK Foundry, enables a direct comparison between TI-LGAD and standard UFSD structures. This research aims to...
Devices with internal gain, such as Low Gain Avalanche Diodes (LGADs) demonstrate O(30) ps timing resolution, and they play a crucial role in High Energy Physics (HEP) experiment. Similarly, resistive silicon devices, such as AC-coupled LGADs (AC-LGADs) sensors achieve a fine spatial resolution while maintaining the LGAD’s timing resolution. Devices of both types, with varying gain-layer...