moonshine現象は、典型的にはmodular form(やweak Jacobi form)の係数に有限群(特に散在型有限単純群)の表現次元が現れるという形で観測される現象であり、いくつかの例では背後に頂点作用素代数という構造が存在することによって、理論的説明が与えられている。頂点作用素代数は、物理における二次元共形場理論を数学的に記述する枠組みを与え、この文脈では、modular formは理論の分配関数、有限群は理論の対称性群として理解することができる。
セミナー前半では、散在型有限単純群や群の拡大といった群論の基本的な話題を導入した後、最も古典的なmoonshine現象の例であるmonstrous moonshineについて説明する。
セミナー後半では、近年moonshine以外の数理物理においても議論が進展しているConway moonshine...